
For the best experience, open this PDF portfolio in

Acrobat X or Adobe Reader X, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

Oracle’s PeopleSoft 9.0
Campus Community
Changes and Updates for CS
Bundle #48

January 2018

Changes and Updates for CS Bundle #48

Copyright © 2018, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with
other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are “commercial computer software” or “commercial technical data” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software-- Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood
City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or
services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the
agreement with the third party, including delivery of products or services and warranty obligations related to
purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may
incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

Open Source Disclosure

Oracle takes no responsibility for its use or distribution of any open source or shareware software or
documentation and disclaims any and all liability or damages resulting from use of said software or
documentation. The following open source software may be used in Oracle’s PeopleSoft products and the
following disclaimers are provided.

Apache Software Foundation

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/). Copyright 1999-2000. The Apache Software Foundation. All rights reserved.
THIS SOFTWARE IS PROVIDED “AS IS'” AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

Copyright 1998-2003 The OpenSSL Project. All rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS” AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

SSLeay

Copyright (C) 1995-1998 Eric Young. All rights reserved.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com). Copyright (C) 1995-1998 Eric Young. All
rights reserved. THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Loki Library

Copyright 2001 by Andrei Alexandrescu. This code accompanies the book: Alexandrescu, Andrei.
“Modern C++ Design: Generic Programming and Design Patterns Applied”. Copyright (c) 2001.
Addison-Wesley. Permission to use, copy, modify, distribute and sell this software for any purpose is
hereby granted without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation

http://www.apache.org/)

http://www.apache.org/)

http://www.openssl.org/)

http://www.openssl.org/)

mailto:tjh@cryptsoft.com

Helma Project

Copyright 1999-2004 Helma Project. All rights reserved. THIS SOFTWARE IS PROVIDED “AS IS” AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE HELMA PROJECT OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Helma includes third party software released under different specific license terms. See the licenses
directory in the Helma distribution for a list of these licenses.

Sarissa

Copyright 2004 Manos Batsis

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.

CS Bundle #48 PeopleSoft 9.0 Campus Community

PeopleSoft Campus Community
Documentation Updates for CS Bundle #48

Documentation about CS 9.0 bundle changes is incorporated into the relevant 9.2 PeopleBook
chapters. PDFs of the updated chapters are attached.

Use this Overview document to view a list of bundle changes and updated chapters.

Cross references in PDF chapters appear as follows:

• If a cross reference is to a topic in the same book (for example, Campus Community
topic A contains a cross reference to Campus Community topic B), the cross reference
displays only the topic title.

• If a cross reference is to a topic in a different book, the cross reference displays the topic

title and the book name.

• Some cross references appear as links but are actually text-only.

Here is a list of the bundle 48 changes and the chapters that contain documentation about those
changes. Chapters are in the PeopleSoft Campus Solutions 9.2: Campus Community
PeopleBook unless noted otherwise.

• Entity Registry enhancement allows saving to PeopleTools audit records created to
track changes to data.

 Setting Up Entity Registry.pdf

Oracle Proprietary and Confidential 1

Using PDF Package Documentation
These instructions are for Adobe Reader X, with the latest updates installed (with the PDF open,
click Help, Check for Updates).
The package opens with this Overview document that lists the bundle changes and updated
chapters.
Click the Files tab to view the list of chapters.
To search for documentation about the changes within a particular chapter, click on the chapter
.pdf in the left hand pane. In the Search field in the top right hand corner of the PDF package,
enter “bundle xx” where xx is the bundle number, and click the search icon.
You can search the entire package for documentation updates by selecting Edit, Search Entire
Portfolio.

Note. This PDF package is an update to the PeopleSoft Campus Community 9.0 PeopleBook. It
describes the Patch ID #27090642 / Product Update ID # 941147 that was posted to My Oracle
Support in January 2018. Use this PDF package in conjunction with your PeopleBook to maintain a
complete set of documentation.

CS Bundle #48 PeopleSoft 9.0 Campus Community

• Documentation-only update: updates to various sections of Program Enrollment
documentation

 Working with the Rules Engine.pdf

Oracle Proprietary and Confidential 2

		Oracle’s PeopleSoft 9.0 Campus Community

		Apache Software Foundation

		OpenSSL

		SSLeay

		Loki Library

		Helma Project

		Sarissa

		Documentation about CS 9.0 bundle changes is incorporated into the relevant 9.2 PeopleBook chapters. PDFs of the updated chapters are attached.

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 1

Setting Up Entity Registry

Understanding Entity Registry

An entity is an object that provides access (view, create, or update) to data in a record. You implement an
entity through an application class.

The system delivers entities related to constituent (personal), admissions, and enrollment data. The list of
delivered entities may grow with new web services or new functionality that we may deliver in the future.
You can create new entities and extend delivered entities (or modify them to a lesser degree). New entities
can be built based on new or existing records. How the entity relates to the record is dependant on the
entity type.

Note: You define entity relationships in the Entity Registry component. However, outside of the Entity
Registry component, entities are unaware of each other. This means all the code related to a particular
entity is entirely encapsulated in that entity. This keeps the entities clean and avoids including child
entities code inside the parent entity. For instance, even if Emergency Contact entity is a child of
Constituent entity, the latter does not know anything about Emergency Contact other than having a
relationship defined in the Entity Registry component.

Use the Entity Registry component to configure how the system should use specific entities (or
properties). Entity logic is designed to be-reusable for different purposes such as:

• Web services: Based on the specified application class, the Entity Registry component enables you to
automatically generate code and XML schemas. You can then directly paste the generated code and
schemas inside the application classes and Integration Broker messages. The system uses these classes
and messages when a transaction is processed through web services. Web services can use the entities
for moving the data to and from functionalities such as XML messages, error handling, save/delete,
and any other functionality coded in the entity.

• Component data validation: Components and web services can use the same logic to do data
validation. Currently, the easiest way to reuse the logic is in Savepostchange code. For example, the
Application Transactions and the Constituent Staging components use this way.

• Beans: Beans are objects containing multiple types of data. Entities are a natural fit to support beans.
This is because you can design entities to support multiple types of data, and make any transition to
web services easy.

• APIs: The system can use entities to modify record data programmatically, with full access to all the
common logic used by components or web services.

• Import/Export: The system can export data to XML files easily using the entities' ability to get data
and encode it into XML. Import can be done using the ability to translate data from a XML file and
save the translated data.

Setting Up Entity Registry Chapter _

2 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Batch Processing: You can use entities to handle data in batch. This can be done by loading the data
using XML matching the entity style, or by any other means such as populating the data into an entity
directly.

The Admissions Application Web Services (AAWS) feature illustrates an example of how to use the
Entity Registry component. In AAWS, an applicant uses a user interface to enter constituent (personal)
and admissions application information. In such a case, the system first needs to stage the entered
information, then validate it, and finally move the information to the corresponding production tables. We
have delivered entities for the constituent data (for example, Names, Addresses, Emergency Contacts, and
so on) and we have delivered entities for the admissions data (for example, Academic Interests, Academic
Plan, Academic Program, and so on). For each of these entities, we have configured the name of the stage
record and the name of the equivalent production record in the Entity Registry component. Based on this
delivered Entity Registry component configuration, the system knows how to pass the information that
exists inside the incoming and outgoing web services.

Warning! Configuring or extending an entity is a technical task and should only be performed by
developers with strong Integration Broker, Application Package, PeopleTools skills and record structure.

Entity Component Adapter
The entity component adapter allows entities to bind to the component row sets. By binding to the
component, entity validation and presave logic can be run on live component data. This allows us to better
consolidate common logic and make sure that components, services, APIS, etc. all follow the same rules
for the data. The Entity Component Adapter also serves to allow rules to be run based on component data.

Configuring Entity Types

This section discusses how to:

• Set up entity types.

• View entities for an entity type.

Pages Used to Configure Entity Types
Page Name Definition Name Navigation Usage

Entity Type SCC_ENT_TYPE Set Up SACR, System
Administration, Entity,
Entity Type

Define categories of entities.
 This allows for more control
over how the entity functions.

Implementation SCC_ENT_TYPE_IMPL Set Up SACR, System
Administration, Entity,
Entity Type, Implementation

View the list of entity names
set up for an entity type.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 3

Setting Up Entity Types
Access the Entity Type page (Set Up SACR, System Administration, Entity, Entity Type).

Image: Entity Type page

This example illustrates the fields and controls on the Entity Type page. You can find definitions for the
fields and controls later on this page.

Entity Type ID Displays the auto-generated unique ID.

When you add a new entity type, this field displays the value
NOID until you save the record. When you save the new entity

Setting Up Entity Registry Chapter _

4 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

type, the field displays the ID that the system assigned to the
entity type.

Entity Type Name Enter the name of the entity type.

The value that you enter here will become a prompt value for
the Entity Type field on the Entity Registry page.

Description Enter the description of the entity registry, primarily for
documentation purposes.

Base Class Enter the base application class that entities, who want to
implement this type, should extend for code generation.

If you implement properties, the system uses the Base AppClass
to find the baseProps for property generation. baseProps are
properties that already exist on the parent and therefore do not
need to exist on the child.

For an example of how a Base AppClass is coded, use
Application Designer to review the application class SCC_
COMMON:ENTITY:BasicEntity.

Note: Most of the code that you can use for entity functionality
is located inside the SCC_COMMON:ENTITY:AbstractEntity.
 At a technical level all the delivered entity types, except
Custom, extend AbstractEntity. AbstractEntity provides a
lot of the functionality common across entities in the Entity
Registry feature. For example, auto handling parent-child
relationships, audit fields, save, delete, and so on are all handled
by AbstractEntity, because they all function the same regardless
of different types of data that entities handle. You will have
to override the Entity Type base class if anything has to be
customized for a particular type.

See Entity Application Class Reference.

Default Class Specify the application class that can be used as a default for
entities of this type. Entities using the default class cannot
have any custom code, but will handle any property setup done
through the Entity Registry. Providing a default class makes
specifying an application class when creating an entity optional,
 otherwise it is mandatory.

All entities of this type must extend SCC_
COMMON:ENTITY:IEntity. However, their constructor must
take two arguments in the signature. The first is the parent
entity. The second is the entityID for this entity as a string.

For examples of default classes see the package SCC_
COMMON:ENTITY:GENERICS.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 5

Code Generation Enter the application class that the system uses to generate entity
code when you select an Action of Generate Code on the Entity
Registry page.

For an example of how an application class used
for code generation is coded, use Application
Designer to review the application class SCC_
COMMON:ENTITY:CODEGEN:EntityGeneratorBase.

If you do not specify the code generation class, the system hides
the Generate Code action when you select this entity type on the
Entity Registry page.

See Setting Up Entity Registry.

Controlled Via API Only Select if you want that no entities of the type can be added
through the Entity Registry page. When set up via the API
certain parts of the entity may be locked for editing through the
Entity Registry component.

Use Production Record Select if the entities tied to this entity type need a production
record. If this check box is not selected, the Production Record
field is not shown on the Entity Registry page. By default, every
entity uses a production record.

Use Stage Record Select if the entities tied to this entity type need a stage record.
 A stage record is useful if you want to temporarily store data
for validation or processing before moving the data into a
production record.

If you do not select this check box, the system does not display
the Stage Record field on the Entity Registry page. The Apply
Data Update Rule is also disabled because it is only used when
stage records are involved.

See Understanding Entity Registry.

Allow Properties Select if you want to configure the entity properties for all the
entities tied to this entity type.

To configure the entity properties, select Edit Properties in the
Action field on the Entity Registry page.

If you deselect the Allow Properties check box, the Edit
Properties action is not available on the Entity Registry page.

Sync AppClass (Sync Application
Class)

Specify an application class to synchronize the properties
to the underlying records. While this is mostly needed if the
entity type allows properties, you can also sync properties
programmatically even if configuring the properties is not
allowed. For the latter case, do not select the Allow Properties
check box and enter the appropriate sync application class.

Setting Up Entity Registry Chapter _

6 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

For an example of a Sync AppClass, use Application
Designer to review the application class SCC_
COMMON:ENTITY:PROPERTY:PropertySyncBase.

See Synchronizing Entity Properties.

Entity Type Children
Use this grid to list the Entity Types for which you can add child entities on the Entity Registry page.

On the Entity Registry page, you can add child entities to a parent entity. You can add a child entity only
if its entity type is entered in the Entity Type Children grid.

For example, if you create an entity type that uses production and stage records, you could list in this grid
other entity types that use this setup. This will allow, in the Entity Registry page, to select child entities
that are set up with an entity type different from the parent, but follows the same logic.

For details on how children entities are defined, see Setting Up Entity Registry, “Configuring Entity
Registry.”

Rules Engine Data Set and Read Only Entity Types
The Rules Engine Data Set entity type supports entities that are not record based. These entities are purely
meant to act as data structures. This version of data sets is used by the rules engine, and controlled via a
custom, simplified interface.

See Understanding the Rules Engine.

Read Only entities are essentially basic entities for which save and delete are disabled. They make it
easy to create entities on top of records for rules engine access. This makes it easy to add new entities
accessible from the rules engine without introducing back door data updates. If at some point proper
validation and/or presave logic is added, the entity can be switched to Basic Entity and save and delete
would be enabled.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 7

Viewing Entities for an Entity Type
Access the Implementation page (Set Up SACR, System Administration, Entity, Entity Type,
Implementation).

Image: Implementation page

This example illustrates the fields and controls on the Implementation page. You can find definitions for
the fields and controls later on this page.

Click an Entity link to access the Entity Registry page for the entity.

Setting Up Entity Registry Chapter _

8 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Setting Up Entity Registry

This section discusses how to:

• Configure entity registry.

• Set up entity properties.

• Set up entity property details.

• Create entity views.

• Generate entity schema.

• Generate entity code.

• View the entity hierarchy.

Pages Used to Set Up Entity Registry
Page Name Definition Name Navigation Usage

Entity Registry SCC_ENTITY_REG Set Up SACR, System
Administration, Entity,
Entity Registry

Maintain the delivered entities
and extend the data structure
to process your transactions.
 Generate code or schema
based on the setup data that
you enter on this page.

You can paste the generated
code inside the application
class. The application class
can be used by a mechanism
to process data, for example a
web service. Generate schema
that can be pasted inside the
Integration Broker schema.

Synchronize an entity.

Entity Properties SCC_ENTITY_FIELDS Select Edit Properties in the
Action field on the Entity
Registry page.

Review the list of property
names and field names
contained inside the stage
record (if it exists) and the
production record for the
entity.

Modify the default
configuration if you want
a specific property name
to behave differently when
passed inside request or
response XML messages.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 9

Page Name Definition Name Navigation Usage

Entity Property Details SCC_ENT_PROP_DTLS Click the Details link on the
Entity Properties page.

Maintain the label, element
name and default value for a
specific property.

Set up list of values if needed.

Entity Registry Views SCC_ENT_REG_VWS Select Edit Entity View in the
Action field on the Entity
Registry page.

Create subsets of entity meta-
data.

Entity Schema SCC_ENTITY_XSD Select Generate XSD in the
Action field on the Entity
Registry page.

View the auto-generated
entity schema code.

You can copy and paste this
code inside the schema of an
Integration Broker message.

Entity Code Generation SCC_ER_CGEN Select Generate Code in the
Action field on the Entity
Registry page.

Set up how you want to
generate the application class
code.

After generating the
application class code,
 you can paste this code
inside an application class in
Application Designer.

Entity Hierarchy Display SCC_ENTITY_HRCHY Select View Hierarchy in the
Action field on the Entity
Registry page.

Review the children hierarchy
for the selected entity.

Note: The page does not
display the entity's parent
relationships. Only child
relationships are displayed.

Setting Up Entity Registry Chapter _

10 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Configuring the Entity Registry
Access the Entity Registry page (Set Up SACR, System Administration, Entity, Entity Registry).

Image: Entity Registry page (1 of 2)

This example illustrates the fields and controls on the Entity Registry page. You can find definitions for
the fields and controls later on this page.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 11

Image: Entry Registry page (2 of 2)

This example illustrates the fields and controls on the Entry Registry page (2 of 2). You can find
definitions for the fields and controls later on this page.

You can use the Entity Registry page to not only create new entities but also to maintain existing entities.

For example, you can use the page to:

• Specify that you do not want to apply a data update rule to an entity.

• Change the application class that handles the entity data.

• Change the staging or production table record.

• Require a property to be included inside the incoming or the outgoing xml message.

• Generate the schema based on specific entity settings that you can later use to configure the messages
in Integration Broker.

• Generate the base code for the entity based on the configuration provided.

• Add entities as children, extending the entity tree.

• Edit entity views.

• Sync entities.

Entity Configuration
Entity ID Displays the auto-generated unique ID.

When you add a new entity type, this field displays the value
NOID until you save the record. When you save the new entity,
 the field displays the ID that the system assigned to the entity.

Name Required. Enter the entity name.

Status Required. Enter the entity status.

If you select Inactive, the system ignores the entity and its
children.

Entity Type Select the entity type. The system prompts you with the entity
types defined on the Entity Type page.

See Configuring Entity Types.

Setting Up Entity Registry Chapter _

12 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Description Enter the description of what the entity is used for.

AppClass (Application Class) Specify the application class that implements the entity's logic.

Generally, this application class provides the properties, and
adds any custom validation, pre-save, or fill logic. However,
 because it is an application class, this class can override any
functionality from the base class.

The delivered base classes are stored inside the application
package called: SCC_COMMON:ENTITY (for instance
StagedEntity, StagedHREntity, BasicEntity, ChildEntity, and
WorkEntity application classes). The application class that you
enter here extends these existing application classes depending
on the entity type.

Note: When creating a new entity, you can create an empty
application class in Application Designer and enter its name
here. Once the entity setup data is entered, you can select
Generate Code in the Action field to generate the code that can
be pasted inside the application class peoplecode.

If the entity is of a type that supports a default class the
application class will not be marked required, and if no
application class is specified the default will automatically be
used. The default can be overridden at any time by specifying an
appclass here.

Prod Record (Production Record) Enter the name of the production record where the entity data is
permanently stored.

Note: This field appears only if you have indicated that the
selected entity type will use production record. You indicate this
on the Entity Type page.

Stage Record Enter the name of the stage record where the entity data is
temporarily stored.

Note: This field appears only if you have indicated that the
selected entity type will use stage record. You indicate this on
the Entity Type page.

Element (XML) Enter the element name that the system will use for this entity
inside the XML messages.

The name that you enter here should not match any other
entity’s element name and cannot contain spaces. For example,
 for the delivered Emergency Contact entity name, we gave the
element name EMERGENCY_CONTACT.

Log PeopleTools Audit Bundle 48. Enhancement allows saving to PeopleTools audit
records.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 13

Select the check box to allow saving to PeopleTools audit
records created to track changes to data. By default, tools
auditing in entity registry is turned off.

Entity application classes with their own populateAudit and/or
Save methods must add calls to these methods for auditing to
work:

• Method populateAudit—add call to Abstract Entity’s
populateToolsAudit();

• Method Save—add call to Abstract Entity’s saveToolsAudit(
);

If a record’s entity application class has overridden the
populateAudit and/or Save methods, it must be modified to add
methods that log audit data.

When a record is marked for auditing, the tools auditing feature
caches the record and its field details, preventing recurring
requests to the database for the record’s audit setup. For
that reason, you need to update or reset the entity registry
cache whenever you update the audit setup of a record in the
application designer. You can update the cache from the Entity
Registry and Entity Property Sync pages.

Apply Data Update Rule Select if you want to apply a data update rule to an entity. You
use the Data Update Rule Entry page to define data update
rules for an entity. Defining data update rules for an entity may
require additional coding.

Note: SCC_COMMON.ENTITY.AbstractEntity application
class handles the basic logic for data update rules. For special
cases, where rules could be subdivided by type, the logic resides
in the particular entity's application class.

Note: To populate an entity on the Data Update Rule Entry
page, you must first select the Apply Data Update Rule check
box for the entity on the Entity Registry page. Then, click the
Refresh button on the Data Update Rule Entry page. Conversely,
 to remove an entity from the Data Update Rule Entry page, first
deselect the Apply Data Update Rule check box for the entity.
 Then, click the Refresh button on the Data Update Rule Entry
page.

See Setting Up CTM.

Action You can select from the following actions:

• Edit Entity View

• Edit Properties

• Generate Code

Setting Up Entity Registry Chapter _

14 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Generate XSD

• Sync Entity

• Unit Test

• View Hierarchy

See the “Selecting Actions on the Entity Registry Page” section
for information about these actions.

Selecting Actions on the Entity Registry Page
Edit Entity View Select to access the Entity Registry Views page. Entity views

allow the creation of subsets of entity meta-data.

Edit Properties Select to access the Entity Properties page.

The Entity Properties page enables a finer control of entity
properties through a UI controlled meta-data.

Note: This action is available only if you have indicated that the
selected entity type will use properties. You indicate this on the
Entity Type page.

Generate Code Select to access the Entity Code Generation page after you
complete the entity registry setup. The Entity Code Generation
page enables you to configure and generate the application class
code.

See Setting Up Entity Registry, “Generating the Entity Code.”.

Generate XSD Select to access the Entity Schema page. The Entity Schema
page displays the generated schema that you can paste inside an
Integration Broker message schema.

Note: While you can generate schemas from any entities, it
is useful only for entities that a service directly calls. In other
words, it depends on what the base entity needs from a service
that uses the entity. For example, the Names entity (which is a
child of the Constituent entity) is not directly used. Therefore, if
you extended the Names entity or make modifications to it, do
not generate the XSD for Names, but instead generate the XSD
for its root entity (that is, Constituent).

Note: It is useful to select this action when the root entity is
modified. For instance, select this action for a parent entity, if
you add or remove its children entities inside the Children grid.

See PeopleSoft Integration Broker for more details on schemas.

Sync Entity Select this action to run the sync process. A pop-up appears to
indicate that the sync process has completed.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 15

The sync process:

• Updates properties to match underlying records.

The sync process syncs the entity properties with the fields
of the underlying records (stage record if it exists and
production record). The sync process ties a property to
each field of the underlying records. This is very important
because the system uses the properties as the source of truth
to drive the functionality of the underlying entity, as well as
to generate the entity code and schema (not the field names
or the record objects).

• Keeps entity views up to date with changes to entity
properties and children.

• Keeps entity properties/children synced with the Common
Attribute Framework.

You should run the sync process after creating or modifying an
entity or after you have set up or changed the underlying records
for the entity.

You must run the sync process before you generate any entity
code or schemas. Therefore, the sync process is automatically
triggered when you save the Entity Registry component or select
an Action of Generate Code or Generate XSD (selecting these
actions would also trigger a save) when one of the following
conditions is met:

• A new entity is created.

• The stage or production record has been changed.

• The last updated datetime of either record is more recent
than the last updated datetime of the entity.

The sync process is supported based on entity type. Currently,
 all delivered entities, except Custom, support syncing.

Note: The Sync Entities action is available only if you have
specified a Sync AppClass for the entity type. If you have
selected the Allow Properties option but did not specify a Sync
AppClass on the Entity Type page, even then the system does
not display the action.

Note: The sync process does not reset the settings you have
entered on the Entity Properties and the Entity Property Details
pages. The process only synchronizes the entities and field
names with the underlying records.

Setting Up Entity Registry Chapter _

16 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Warning! If you add, remove, or rename a field of an
underlying record, then all the entities using the record must
be re-synchronized. The Sync process will handle property
associations. After the sync, you should update the code to
incorporate the changes the sync process had made. The easiest
way to do this is to simply regenerate the code and re-add any
customizations.

Note: Properties that are specified on the entity definition that
do not exist at all in the code will be automatically handled. If
the property maps to a field on the record that will be taken care
of. If the property is completely new it will be stored in a hash
table. Either way the safest way to access that data is by using
the new methods getProperty and setProperty. Defaults all use
these methods to access properties.

You can also manually update the code. To do this, remove
database references from fields that are no longer part of the
record. Add properties for new fields that should now be in the
property list.

See Synchronizing Entity Properties.

Unit Test Select to access the Entity Unit Tests page. The page lists the
unit tests that you have created for the entity and enables you to
run the unit tests.

See Executing Unit Tests for Entities.

View Hierarchy Select to view the children hierarchy for the entity.

Children
Use the Children grid to list the entity names that are children of the main entity name. For example,
in the preceding Entity Registry page screen shot, the Emergency Contact is the main entity and the
Emergency Phone is a child. A parent-child relationship does not imply dependency. Each entity can exist
independently and is sometimes used as such, that is, you can directly create an instance of Emergency
Phone entity and use it to modify an Emergency Phone Number, without needing the parent. Entity logic
is encapsulated inside the entity and is unknown from the related entities.

Warning! To create parent-child relationships, a good understanding of the data structure is required.

Order Specify the sequence of the child entities in the XML schema.

Entity Name Enter the name of the child entity.

The system prompts you with only the entities that are
configured with an entity type defined as Entity Type Children
for the parent entity type. For example, suppose on the Entity
Type page, for Staged Entity type you have added two entity
type children, Staged Entity and Custom. Now, suppose
Academic Program and Academic Plan entities have an entity

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 17

type of Staged Entity on the Entity Registry page. Two other
entities - Academic Interests entity has an entity type of Custom
and Prospect Program entity has entity type of Basic Entity
on the Entity Registry page. Therefore, on the Entity Registry
page you can add Academic Plan and Academic Interests as
child entities for the Academic Program entity. However, you
cannot add Prospect Program entity as a child for the Academic
Program entity.

See Configuring Entity Types.

Status Displays the status of the child entity.

Embed Specify how you want the XML messages to display the child
entity data with the parent entity data.

Select the Embed check box if you want the child entity data to
be embedded in the parent entity data. This is useful for certain
sibling record purposes where you do not want the XML to
show the child at a separate level from the parent.

• Example when non-embedded (that is, you do not select the
Embed check box):

<Entity>
 <Data1/>
 <Data2/>
 <Entity2>
 <Data3/>
 </Entity2>
</Entity>

• Example when embedded (that is, you select the Embed
check box):

<Entity>
 <Data1/>
 <Data2/>
 <Data3/>
</Entity>

Min Enter the minimum number of occurrences of this entity under
the parent, which can be the number 0 or any number greater
than 0.

Max Enter the maximum number of occurrences of this entity under
the parent.

Note: The number 0 means the maximum is unbounded, or any
number greater than the min value can be used.

Element Wrapper (XML) Optional. Enter a value that the system can use as a tag to wrap
all the child occurrences of this entity under the parent.

• Example when Element Wrapper (XML) is left blank (no
wrapper):

<Entity>
 <Data1/>

Setting Up Entity Registry Chapter _

18 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

 <Data2/>
 <Entity2>
 <Data3/>
 </Entity2>
 <Entity2>
 <Data3/>
 </Entity2>
 <Entity3>
 <Data4/>
 </Entity3>
</Entity>

• Example when Element Wrapper (XML) is defined (with
wrapper):

<Entity>
 <Data1/>
 <Data2/>
 <Wrapper>
 <Entity2>
 <Data3/>
 </Entity2>
 <Entity2>
 <Data3/>
 </Entity2>
 </Wrapper>
 <Entity3>
 <Data4/>
 </Entity3>
</Entity>

View Click to access the Entity Registry page for the child entity.

Parents
This region displays the parent entities. More than one parent can exist. Click the link to access the Entity
Registry page for the parent.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 19

Setting Up Entity Properties
Access the Entity Properties page (select Edit Properties in the Action field on the Entity Registry page).

Image: Entity Properties page (1 of 2)

This example illustrates the fields and controls on the Entity Properties page (1 of 2). You can find
definitions for the fields and controls later on this page.

Image: Entity Properties page (2 of 2)

This example illustrates the fields and controls on the Entity Properties page (2 of 2). You can find
definitions for the fields and controls later on this page.

The Entity Properties page enables you to define how a property should behave when its data is encoded
as XML (for instance, when the system uses the property inside web services). A property is defined

Setting Up Entity Registry Chapter _

20 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

as an individual value on the entity that is controlled by the Entity Registry component. Properties are
generally based on the fields of the underlying records (that is, staging record if it exists and production
record). However, properties can exist that are independent of the underlying records. We refer to these
independent properties as transient properties. You must write custom code to save or populate the
transient properties. Entities can have an unlimited number of properties.

The system uses the properties, and not the fields of the underlying records, as the source of truth to drive
the functionality of the underlying entity, and to generate the entity code and the schema.

Order Order the properties as you want then to be displayed inside an
XML message.

Property Name Indicates the property name on the entity object.

By default, the property name matches the field name. You can
change a property name, unless the property is already handled
by the base application class, which causes the property to be
read-only.

Note: You cannot delete property names that match the fields in
the staging record (if it exists) or in the production record.

Note: Inside the delivered entities, the property name SCC
_ENTITY_INST_ID is listed even though it is not included
inside the underlying records (we refer to these extra properties
as transient properties). The primary use for this transient
property is to provide a unique identifier for a particular
instance of an entity. When an error occurs, this ID enables the
system to link an error to a specific entity instance.

Warning! If you make any changes to the property name after
the code has been generated, then you must either regenerate the
code or manually update the property names to match the new
name.

For information on how to use property name SCC_ENTITY
_INST_ID, see "User Interface Considerations" (PeopleSoft
Campus Solutions 9.2: Recruiting and Admissions), “Error
Handling.”

See Configuring Entity Types.

Property Type Indicates whether the property is a String, Number, Date,
 Datetime, or Time.

If the property is based on a field, the system automatically
determines the property type based on the field type. You cannot
edit such a property type.

Note: The Property Type field is enabled only when the entity
is set up with the entity type Custom or when you add a new
property name (transient property).

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 21

Note: When the system triggers the Sync process, the process
makes sure that the Property Type displayed for each property
on this page matches the field type changes that may have
occurred in the underlying records.

Warning! If you make any changes to the property type after
the code has been generated, then you must either regenerate the
code or manually update the property data types to match the
new type.

Field Name Displays the name of the matching field inside the underlying
records. Only the sync process can enter and maintain this
value.

Note: A Field Name value appears only when the property is
field based.

Note: The sync process ensures that the correct Field Name
value appears.

In Stage Indicates whether the Field Name is included in the stage
record. Only the sync process can select or deselect this check
box.

Note: This field appears only if you have specified a stage
record on the Entity Registry page.

Note: The sync process verifies whether the field is still
included inside the stage record. If this property changes, you
will need to change the code in the get and set methods to match
the changes.

Example code for a property that is only in stage record:

get PropertyName
 /+ Returns String +/
 If %This.STAGE_MODE Then
 Return %This.data. PropertyName.Value;
 End-If;
 Return "";
end-get;

set PropertyName
 /+ &NewValue as String +/
 If %This.STAGE_MODE Then
 %This.data. PropertyName.Value = &NewValue;
 End-If;
end-set;

Setting Up Entity Registry Chapter _

22 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Warning! If you remove a field from both production and stage
records, the Entity Properties page will still display the property.
 Properties are never removed and have to be manually deleted,
 to avoid changes to schema. Notice that after you manually
remove the property in the code, the system enables the minus
sign in the grid to allow you to delete the property.

In Production Indicates whether the Field Name is included in the production
record. Only the sync process can select or deselect this check
box.

Note: The sync process verifies whether the field is still
included inside the production record. If this property changes,
 you will need to change the code in the get and set methods to
match the changes.

Note: This field appears only if you have specified a production
record on the Entity Registry page.

Warning! If you remove a field from both production and stage
records, the Entity Properties page will still display the property
the Entity Properties page. Properties are never removed and
have to be manually deleted, to avoid changes to schema. Notice
that after you manually remove the property in the code, the
system enables the minus sign in the grid to allow you to delete
the property.

Example code for a property that is only in production record:

get PropertyName
 /+ Returns String +/
 If not %This.STAGE_MODE Then
 Return %This.data. PropertyName.Value;
 End-If;
 Return "";
end-get;

set PropertyName
 /+ &NewValue as String +/
 If not %This.STAGE_MODE Then
 %This.data. PropertyName.Value = &NewValue;
 End-If;
end-set

Attribute Attributes from the Common Attribute Framework can be
accessed as properties on an entity. This allows attributes to be
treated more like fields on a record.

See the “Common Attribute Framework Integration”
documentation later in this section.

Viewable and Editable When you select the Viewable check box, the system adds
the property to any generated outgoing XML, JSON or Rules
Engine message that includes the entity (the system does this

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 23

using the toXMLNode method). This outgoing message from a
system can either be a request message or a response message.

When you select the Editable check box, the system parses
the property from any incoming XML, JSON or Rules Engine
message that it receives (the system does this using the
fromXMLNode method). If the Editable check box is not
selected, the system will ignore any incoming data.

Note: While entities are used for services, it is not their only
use. Options such as Viewable and Editable have implications
outside of services (for instance, importing and exporting XML,
 JSON or Rules Engine data). Therefore, while request and
response messages do make use of the Viewable and Editable
options, these messages are not the only usage scenarios for the
options.

Note: If you do not select either the Viewable check box or the
Editable check box, the property will not appear in the schema.

Note: The values for transient properties are not stored, but the
system can include these values inside the messages. Because at
configuration time the sync process cannot tell if it should have
an incoming or outgoing value or not, the Viewable and Editable
options are always valid for transient properties.

Note: The sync process, by default, selects the Viewable and
Editable check boxes for every field except for fields that the
system has programmatically marked to be ignored based on
the entity type (for instance SCC_ROW_ADD_OPRID, SCC
_ROW_ADD_DTTM, SCC_ROW_UPD_OPRID, and SCC_
ROW_UPD_DTTM). You can manually select the Viewable
and Editable check boxes for these ignored fields.

Required Indicates if the field is required. If the check box is selected, the
system must populate the data into the field. The system will
check whether the data exists for the field inside the XML or
JSON messages during validation.

When a property is marked as required, the system
automatically selects and disables the Viewable check box.
 Selecting a field as required means it will be marked minOccurs
1 in the schema, that is, the field must be included in any
occurrence of the XML.

Setting Up Entity Registry Chapter _

24 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Note: For entities configured with an entity type that uses a
stage record, the sync process, by default, selects the Required
check box if the field is included in both production and stage
records. If the field is only included in one of the underlying
records, even it if is required in the record definition, the sync
process does not mark the field as required. This is because the
field may not be required in all circumstances.
For entities configured with an entity type that does not
use a stage record, the sync process, by default, selects the
Required check box if the field is marked as required inside the
production record.

LOV (List of Values) Select if you want to send the value description, with the
value in the outgoing XML (the Viewable check box must be
selected).

The system enables this check box for only the fields that have
list of values, that is field names defined with a prompt table
or field names defined as translate fields inside the record
definition in Application Designer. The system includes the
description inside the outgoing XML message under a new tag
labeled <name of the property Element (XML)_LOVDescr>.

By default, this option uses the following logic to return the
description:

• For translate fields: the value’s long description is returned.

• For prompt fields: the logic looks for the existence of the
following fields in the record (respecting the order given):
DESCR, DESCRSHORT, DESCR30, DESCR100. If none
of these works, it uses the first non-key field marked as a list
box item.

For example, in the Emergency Contact entity, the production
record is SCC_EMERG_CNT_2. If you want to include a
description in the outgoing XML message for the COUNTRY
property (which is a field with a prompt table), selecting the
LOV check box will result in including the following tag
inside the outgoing XML message: <COUNTRY_LOVDescr>,
 where COUNTRY is the Element (XML) name defined for
the COUNTRY property. Suppose the COUNTRY value gets
populated with USA. The LOVDescr tag will then contain:
<COUNTRY_LOVDescr>United States</COUNTRY_
LOVDescr>. The value United States corresponds to the
DESCR field found inside the prompt table (COUNTRY_
TBL) defined inside the SCC_EMERG_CNT_2 record for the
COUNTRY field name.

If you do not want to use the default logic, click the Details link
and set the LOV Unique ID field on the Entity Property Details
page.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 25

Note: The sync process enables the LOV check box only if the
field is defined with a prompt table or defined as a translate field
inside the record definition. The sync never selects or deselects
the check box. Only you can manually select or deselect this
check box.

Note: The default logic returns the field description from the
record that is being used. Therefore, if the service operation is
using the stage record, it will evaluate the record definition for
the stage record. If instead the operation uses the production
record, it will use the field description stored inside the record
definition for the production record.

Details Click to access the Entity Property Details page.

Last Synced Shows the last time this entity was synced. If the entity has not
been synced since the last synced tracking was introduced, this
date will not appear. Clicking the date time link will show the
detail log for the sync. This log is identical to the one seen when
viewing the details from the Entity Property Sync component.

Common Attribute Framework Integration
Attributes from the Common Attribute Framework are treated as entity properties. By adding the
properties and syncing the entity the new attributes appear as properties.

Attribute types map to equivalent entity property types:

Attribute Type Property Type

Short Text, Text, Long Text, Yes/No, LOV String

Number Number

Date Date

Time Time

Repeatable maps to the list entity property list attribute.

If the Attribute Type is a list of values the Property LOV Unique ID is set.

For each attribute record a child entity is created. It is automatically added as a child. It is maintained
and should never be accessed directly. This entity will never show up in XML/JSON and will not be
accessible in the rules engine.

See Understanding Common Attribute Framework.

Setting Up Entity Registry Chapter _

26 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Setting Up Entity Property Details
Access the Entity Property Details page (click the Details link on the Entity Properties page).

Image: Entity Property Details page

This example illustrates the fields and controls on the Entity Property Details page. You can find
definitions for the fields and controls later on this page.

List If this check box is selected, the property is treated as a list. This
supports repeatable attributes. Non-field based properties can
also be marked as lists, in which case they are treated as arrays
in the entity application class.

Show LOV Description This check box is the same as the LOV check box that appears
on the Property Details grid of the Entity Properties page. When
one is selected, the other one is also selected. They both have
the same purpose.

Element (XML) Indicates the label for the XML tag name used for this property.
 This is the tag that the system uses in the XML schema of the
incoming and outgoing XML messages.

Warning! If you change this value, you must select an Action
of Generate XSD on the Entity Registry page to regenerate
the schema and paste it inside the Integration Broker message
schema.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 27

Note: The sync process, by default, sets this value to match the
Field Name.

Default Define the default value. There are three types of defaults:

• Record: Uses the default value defined in the record
definition in Application Designer for the underlying
production record. This is the selected choice by default.

• Custom: If you select Custom, the Value field appears. Use
the Value field prompt to select a default value that will be
included inside the outgoing XML.

• Skip: Skips the property at the time of populating default
values.

Note: The sync process always sets this value to Record.

Label Indicates the label for the property as shown in the comments
for the XML schema. This is primarily a descriptive attribute.

Note: If you want to see the new label in the schema, regenerate
the schema.

Note: The sync process sets this value with the default label
defined in the field properties of the production record.

Description Indicates the description for the property as shown in the
comments for the XML schema. This is primarily a descriptive
attribute.

Note: If you want to see the new description in the schema,
 regenerate the schema.

Note: The sync process sets this value with the description
defined for the field definition in Application Designer.

LOV Unique ID This field allows you to select a specific LOV prompt definition
for the entity property to use.

Creating Entity Views
Entity views allow the creation of subsets of entity meta-data. Entity views can only reduce access from
what is specified at the base entity. So if a property is set to Viewable but not Editable, you cannot set it to
Editable from a view, but Viewable can be turned on or off.

Setting Up Entity Registry Chapter _

28 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access the Entity Registry Views page (select Edit Entity View in the Action field on the Entity Registry
page).

Image: Entity Registry Views page

This example illustrates the fields and controls on the Entity Registry Views page. You can find
definitions for the fields and controls later on this page.

Every entity has a “Complete” view. The complete view always matches what has been set on the entity
property and children. This view cannot be edited and is maintained during the sync process. A single
view, per entity, is always marked default. The default view is used if no profile is selected, or if that
entity does not belong to the current profile. Default also specifies the view assigned when a new entity is
added to a profile. The default is used by all entity based services built prior to profiles existing, such as
EWS and AAWS.

See Setting Up Entity Profiles.

The sync process maintains the entity view matching the entity properties and children. No data is
currently logged for entity view syncs.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 29

To create a new entity view, add a row on the Entity Registry Views page. You are taken to the Entity
Registry View Details (SCC_ENT_VW2) page:

Image: Entity Registry View Details page (1 of 2)

This example illustrates the fields and controls on the Entity Registry View Details page (1 of 2). You can
find definitions for the fields and controls later on this page.

Setting Up Entity Registry Chapter _

30 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Image: Entity Registry View Details page (2 of 2)

This example illustrates the fields and controls on the Entity Registry View Details page (2 of 2). You can
find definitions for the fields and controls later on this page.

Entity Properties
Viewable and Editable You can select or deselect these check boxes on a per property/

view basis.

LOV You can select or deselect this check box on a per property/view
basis, but only if the LOV check box is available and selected
for the property.

Entity Children
Hide Select this check box to hide entity children. The entities that

are a direct child of the current entity (and any children of those
entities) will not be shown.

Note: Selecting this check box just hides the entity child; it does
not prevent that child from being filled as part of the initial fill
process. This avoids certain complications in the rules engine.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 31

Generating the Entity Schema
Access the Entity Schema page (select Generate XSD in the Action field on the Entity Registry page).

Image: Entity Schema page

This example illustrates the fields and controls on the Entity Schema page. You can find definitions for
the fields and controls later on this page.

The system generates the schema based on the property settings. If the following settings are changed on
the Entity Properties and Entity Property Details pages, you must regenerate the schema:

• Element (XML)

• Show LOV Description and LOV check box

• In Stage

• In Production

• Required

• List

Any changes made to the following property settings do not require regenerating the schema as their
function is primarily descriptive:

• Label

• Description

You can paste the generated schema to the appropriate message name inside the Schema page
(PeopleTools, Integration Broker, Integration Setup, Messages, Schema).

Setting Up Entity Registry Chapter _

32 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

For information on schemas, see PeopleTools: Integration Broker.

Generating the Entity Code
Access the Entity Code Generation page (select Generate Code in the Action field on the Entity Registry
page).

Note: This should only be done for entities where the application class is specified. Entities using the
default application class approach have no need to do this.

Image: Entity Code Generation page

This example illustrates the fields and controls on the Entity Code Generation page. You can find
definitions for the fields and controls later on this page.

The system generates the code based on the property settings. If the following settings are changed on the
Entity Properties and Entity Property Details pages, you must regenerate the code:

• Property Name

• Property Type

• In Stage

• In Production

• Attribute

• List

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 33

The four options that the grid displays are dynamic, based on the entity type and are coded in the Code
Generation Appclass. Therefore, while these options are available in most of the delivered entity types,
they are not static.

Custom Presave Code Select to add the methods preSave and preSaveFirst to the
generated code. These methods are called as part of the preSave
process.

• preSave: This is called prior to the save process to do any
final data processing.

• preSaveFirst: This is called once per childEntity before
preSave. This is useful if you have code that needs to be run
across all child entities of a particular type, or you need to
remove entities prior to saving.

Custom Validation Code Select to add the methods Validate and validateFirst to the
generated code.

• Validate: Runs as part of the validation process for this
entity. Generally, this method should call commonValidate,
 which is responsible for field level validations. Any custom
validation can also be added.

• validateFirst: This is called once per childEntity, before
any other validation. This method is good for running
validations that may need to compare entities against each
other that you do not need to run during the validation for
every entity.

Custom Set Default Code Select to add an override for setDefault. Normally, setDefault
is based on the field defaults specified on the record. It is
recommended to first call %Super.setDefault() to set the default
field values and then set any special overrides.

Extend Fill Select to override the method called Fill. The system runs this
method when it takes data from a record and populates this data
into an entity. You may need to override this method to modify
data after retrieval from the database or to populate transient
values.

Generate Code Click to generate the code template that can later be pasted
directly inside the Application Class that you have specified on
the Entity Registry page. Use Application Designer to paste the
generated code.

To generate the code, the system uses the staging record (if it
exists) and the production record, the entity type, the entity
property settings, and the selected code generation options.

When you click the button, the sample code template is
displayed inside the Appclass Code box.

Setting Up Entity Registry Chapter _

34 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Note: Clicking this button is useful at the time of creating a new
entity or if a change is made to an existing entity. For example,
 you could generate code when production or stage records are
modified, or when properties are changed.

Viewing the Entity Hierarchy
To view the children hierarchy for an entity, select the View Hierarchy action on the Entity Registry page.
Here is an example of an entity hierarchy:

Image: Entity Hierarchy example

This example illustrates the fields and controls on the Entity Hierarchy example. You can find definitions
for the fields and controls later on this page.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 35

The hierarchy is dynamically drawn using HTML5 SVG. You can download the SVG, but only in
Chrome and Firefox (not in Internet Explorer). IE8 does not support HTML5, so it shows an alternative
list view. All other browsers can also view this using the View List link:

Image: Entity Hierarchy example list view

This example illustrates the fields and controls on the Entity Hierarchy example list view. You can find
definitions for the fields and controls later on this page.

Display Options
Functional View A view targeted at functional users. Shows entity names and

property labels.

Technical View Targeted at developers. Adds Entity ID. Shows hidden
properties and children (hidden children are transparent).

Hide Tooltips Allow or disallow tooltips. Tooltips appear over every entity
name, property name, child link and property link to give extra
details. Only available in SVG mode.

SVG View
Click on properties(x) or children(x) to expand details.

List View
You can click on entities that appear in bold and these entities have children.

Whether child entities appear as expanded or collapsed is retained when switching back and forth between
SVG and List View.

Setting Up Entity Registry Chapter _

36 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Setting Up Entity Profiles

Entity Profiles allow entities and views to be combined to create groupings of entities and views.

This section discusses how to configure entity profiles.

Page Used to Set Up Entity Profiles
Page Name Definition Name Navigation Usage

Entity Profile SCC_ENTITY_PRFL Set Up SACR, System
Administration, Entity,
Entity Profile

Combine entities and views
to create groupings of entities
and views.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 37

Configuring Entity Profiles
Access the Entity Profile page (Set Up SACR, System Administration, Entity, Entity Profile).

Image: Entity Profile page (1 of 2)

This example illustrates the fields and controls on the Entity Profile page (1 of 2). You can find
definitions for the fields and controls later on this page.

Setting Up Entity Registry Chapter _

38 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Image: Entity Profile page (2 of 2)

This example illustrates the fields and controls on the Entity Profile page (2 of 2). You can find
definitions for the fields and controls later on this page.

Entity Profile ID Auto-generated unique ID for the profile.

Entity Profile Name and Entity
Profile Description

Enter a name and description for the profile.

Profile Type • Category: This type will be used to make it easier to search
for entities.

For category there is no entity view, since it is not used to
specify display.

• Data Set Category: This profile type is similar to Category,
 but is restricted to entities of the type “Rules Engine Data
Set”. Data set categories are created here but entities can
be added in the Define Data Sets component of the Rules
Engine setup.

See Understanding the Rules Engine.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 39

• Rules Engine: This profile type allows you to restrict what
properties and entity children are available based on the
entity view. The available base entities for a rule category
are also set here. Any entity that is not specified as a base
entity is not selectable as such when generating a rule in a
rule category tied to this entity profile. Any entity that is
not specified here is still accessible from the Rules Engine,
 using the default profile, if it is accessible from the entity
tree.

• Web Service entity profiles are designed for use with Web
Services. They allow simple restriction of each entity to
a particular view. Any entity not specified here can still
be accessed using its default profile. To remove an entity,
 remove it from the list of children on the parent view.

Parent Profile Each profile may have a parent. A child inherits entities, and
their settings, from the parent profile.

Only one level of inheritance is allowed, so a profile can be
a parent or a child, but not both. This avoids the potential for
confusion and maintenance difficulty.

Additional entities may be added on children, and entity settings
may be overridden.

Entity Name Select the name of the entity to be associated with this profile,
 from the list of entities defined in the registry.

Entity View Select the entity view to be used for this entity in the context of
this profile.

View Click this link to see details of access based on the entity view.

Hierarchy Click this link to see the complete hierarchy, starting from the
specified entity, based on the current profile.

At the end of the page, if you select Entity Profile, this allows the addition of all entities from another
profile. Because this is a one time copy it can be done as often as you want.

If you select Entity Tree, you can add entities based on a parent entity being specified, tracing down the
entire tree and adding data. This is a one time add, so it does not do maintenance.

Synchronizing Entity Properties

This section discusses how to run the Entity Property Sync process.

Setting Up Entity Registry Chapter _

40 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Page Used to Synchronize Entity Properties
Page Name Definition Name Navigation Usage

Entity Property Sync SCC_ENTITY_SYNC Set Up SACR, System
Administration, Entity,
Entity Property Sync

Simultaneously synchronize
all the entities configured on
the Entity Registry page.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 41

Running the Entity Property Sync Process
Access the Entity Property Sync page (Set Up SACR, System Administration, Entity, Entity Property
Sync).

Image: Entity Property Sync page (1 of 2)

This example illustrates the fields and controls on the Entity Property Sync page (1 of 2). You can find
definitions for the fields and controls later on this page.

Setting Up Entity Registry Chapter _

42 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Image: Entity Property Sync page (2 of 2)

This example illustrates the fields and controls on the Entity Property Sync page (2 of 2). You can find
definitions for the fields and controls later on this page.

Sync All Entity Properties and Wipe
Entity Cache

Click the Sync All Entity Properties button to start a Process
Scheduler that performs the sync. The Sync All Entity
Properties button is then replaced with a Refresh button so that
you can check the status until the process is complete.

Running this process ensures that all the properties on every
entity get updated to properly reflect the underlying record
objects (stage record when it exists and production record). It
does not reset the properties for which you may have manually
changed the default setup.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 43

The sync process keeps all the entity data up to date. The sync
process:

• Updates properties to match underlying records.

• Keeps entity views up to date with changes to entity
properties and children.

• Keeps entity properties/children synced with the Common
Attribute Framework.

After the sync process is complete, click the Wipe Entity
Cache button. The cache wipe process wipes the entity registry
cache on the appserver. You should perform a cache wipe
each time that you run the sync process – after the process has
completed successfully. This cache uses rowset caches to store
entity registry meta-data. This avoids unnecessary trips to the
databases, bringing significant increases to performance for all
entity registry operations.

You should run a sync and wipe in these events:

• Setting up a new database. This will make sure all your
properties match the fields, and all your views match their
underlying entity.

• Importing data via dat/dms. Since dat/dms bypasses all
processing logic, this fills in any holes.

• If changes are made to records that have entities built on top
of them via appdesigner. The sync process is the only way
to update the entities to match the records. This can also be
done on the entity registry component in a one-off manner.

Note: At the time of delivering this documentation, a similar
overall process does not exist to “reset” all properties at once.

Entity Sync Status Indicates whether the sync process is Requested, In progress or
Complete. For further details on the status of the sync process
look at the PeopleTools Process Monitor.

Sync Log
The full sync log grid is always shown on this page, showing all the entities that have been synced. If the
sync was performed from the entity, as opposed to the Entity Property Sync page, the changes are also
reflected here.

Setting Up Entity Registry Chapter _

44 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The grid also displays a Log link that enables you to view details of what was changed. Click the Log
link to access the Sync Log page that provides a description of the fields that were added, removed, or
changed:

Image: Sync Log page

This example illustrates the fields and controls on the Sync Log page. You can find definitions for the
fields and controls later on this page.

The log grows over time, showing timestamped sections specifying the changes made.

Executing Unit Tests for Entities

This section discusses how to:

• Create an entity unit test.

• Run entity unit test cases.

Pages Used to Execute Unit Tests for Entities
Page Name Definition Name Navigation Usage

Entity Unit Tests (Setup) SCC_ENTITY_UT Select Unit Test in the Action
field on the Entity Registry
page.

Attach the unit test application
classes to an entity and run the
unit tests.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 45

Page Name Definition Name Navigation Usage

Entity Unit Tester SCC_ENT_MASS_UT Set Up SACR, System
Administration, Entity,
Entity Unit Tester

Run all the unit tests
associated with a specified
entity. Unit tests are defined
on the Entity Unit Tests (
Setup) page.

Entity Unit Tests SCC_ENTITY_UT Click the View Unit Tests link
on the Entity Unit Tester page.

View the unit tests tied to an
entity name, the application
class used and the latest run
status for a specific unit test.

Creating an Entity Unit Test
Unit tests are small focused tests that academic institutions can use to ensure that each unit of code in an
entity works properly. This is done to find errors in the smallest segments of code during development
and allow them to be fixed early, resulting in higher quality code.

Because the Entity Registry component is highly extensible, the system integrates unit testing with the
Entity Registry, by delivering a unit test framework.

Coding a Unit Test
Each unit test must extend the class TestBase.

There are three methods that the unit test can override in TestBase:

1. Setup(): Is the first method that your unit test must call. This method should be used to set up the
environment for the test. If environment setup is not required, the unit test does not have to implement
this method.

2. Run(): Is the main testing method. A unit test must run all the code relevant to executing the test in
this method. If the test fails, the property status should equal the property FAILED. If the test runs
successfully, the property status should be set to PASSED. This method must be overridden.

3. Teardown(): Is the method that does the cleanup. In theory, this method should reset all the data, as if
the test had never been run, therefore, if required the test can be run again successfully. This method is
optional, depending on your testing requirements.

The full class reference for TestBase is presented in the SCC_COMMON:Testing:TestBase application
class. This application class is described later in this section.

The following code shows an example where a unit test retrieves a constituent that is based on TestBase:

import SCC_COMMON:Testing:*;
import SCC_COMMON:ENTITY:IEntity;
import SCC_SL_TRANSACTION:INTFC:Constituent;
class GetConstituent extends SCC_COMMON:Testing:TestBase
method GetConstituent();
method setup();
method teardown();
method run();
end-class;

method GetConstituent
%Super = create SCC_COMMON:Testing:TestBase("GetConstituent");
end-method;

Setting Up Entity Registry Chapter _

46 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

method run
/+ Extends/implements SCC_COMMON:Testing:TestBase.Run +/
Local SCC_SL_TRANSACTION:INTFC:Constituent &constituent = create
SCC_SL_TRANSACTION:INTFC:Constituent(Null);
/*Retrieves the constituent*/
&constituent.setStageMode(True);
&constituent.EMPLID = "KU0004";
&constituent.fromProduction();

/*Prints in the message area the complete consitutent xml
for the constituent received*/
Local XmlDoc &responseDoc = CreateXmlDoc("");
Local XmlNode &rootNode =
&responseDoc.CreateDocumentElement("CONSTITUENT");
&constituent.toXmlNode(&rootNode);
%This.Msg(&responseDoc.GenFormattedXmlString());
end-method;

method setup
/+ Extends/implements SCC_COMMON:Testing:TestBase.Setup +/
end-method;

method teardown
/+ Extends/implements SCC_COMMON:Testing:TestBase.Teardown +/
end-method;

Attaching a Unit Test
You attach a unit test to a specific entity. To attach a unit test to an entity:

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 47

1. Navigate to the Entity Registry page for the entity to which you want to attach a unit test (Set Up
SACR, System Administration, Entity, Entity Registry). Continuing with the previous code example,
the following shows that the Constituent entity is selected.

Image: Example of the Entity Registry page for the Constituent entity

This example illustrates the fields and controls on the Example of the Entity Registry page for the
Constituent entity. You can find definitions for the fields and controls later on this page.

Setting Up Entity Registry Chapter _

48 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

2. Select Unit Test in the Action field to access the Entity Unit Tests (setup) page.

Image: Entity Unit Tests (setup) page (for the Constituent entity)

This example illustrates the fields and controls on the Entity Unit Tests (setup) page (for the
Constituent entity). You can find definitions for the fields and controls later on this page.

Active Select to allow the system to run the unit test.

If you clear this check box, the system ignores the unit test.

Type Select a categorical classification of the unit test, this is
mostly for description.

Application Class Select the class that you have created for the unit test. In the
previous exhibit example — Entity Unit Tests (setup) page
for the Constituent entity — the MessageGenerator class is
selected for the Constituent entity.

Run Unit Tests Click to run the unit test.

You can add any number of unit tests on this page and click
this button once to run all the tests simultaneously.

OK Click to save this unit test setup.

The other fields on this page are similar to the Entity Unit Tests (view-only) page that is described in
the next section “Running Entity Unit Test Cases”.

class SCC_COMMON:Testing:TestBase
This is the base class which developers must extend in order to code their tests. The methods to be
overridden are Setup(), Run(), and Teardown(). The system always calls these methods in that order for
each test class. In the final phase of code execution, the system attempts to call Teardown(), even when
there are errors.

In addition, the system delivers helper methods for asserting various invariant conditions. The syntax is:
Assert (&condition_which_must_be_true, "The expected condition was not met!"); In other words, the
first argument to Assert() is a condition which you expect to be true. The second argument is an error
message to display if the condition is not met. The other Assert*() methods are more of syntactic sugar.

Summary:

• Property Summary:

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 49

• public string FAILED

• public string NOT_RUN

• public string PASSED

• public string status

• public string UnitTestName

• Constructor Summary:

Method Modifier and Return Type Method Name and Parameters Method Description

public void TestBase(string UnitTestName_in) This is the constructor.

Developers should pass in a test name
as the sole argument. For now, the
system does not use this value.

• Method Summary:

Method Modifier and Return Type Method Name and Parameters Method Description

public void Assert (boolean isTrue, string onFail) The first argument must be a Boolean
expression, which should evaluate to
true. If false, the system throws an
exception to indicate that the test failed.
 The system catches the exception,
 marks the test as having failed, and
continues on to the next test.

public void AssertNumbersDiffer(number num1,
 number num2, string onFail)

NA

public void AssertNumbersEqual(number num1,
 number num2, string onFail)

NA

public void AssertStringsDiffer(string str1, string
str2, string onFail)

NA

public void AssertStringsEqual(string str1, string
str2, string onFail)

NA

public void Msg(string msg) NA

Setting Up Entity Registry Chapter _

50 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Method Modifier and Return Type Method Name and Parameters Method Description

public void Run() This method must be overridden
to implement the actual test that
developers want to write.

Warning! If you do not override this
method, the system throws an error.

public void Setup() The first method of the test class to be
called during a run.

public void Teardown() The last method of the test class to be
called during a run. The framework
tries to call this method even after an
error. Due to inconsistent exception
handling by the PeopleCode runtime, a
PeopleCode "catch" statement does not
catch all exceptions, and so the system
cannot guarantee this method will be
run after an error.

Examples of untrappable errors include
calls to the Error() builtin, SQL errors,
 and PeopleCode compile errors.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 51

Running Entity Unit Test Cases
Access the Entity Unit Tester page (Set Up SACR, System Administration, Entity, Entity Unit Tester).

Image: Entity Unit Tester page

This example illustrates the fields and controls on the Entity Unit Tester page. You can find definitions for
the fields and controls later on this page.

This component is purely for running unit tests that you associate with entities on the Entity Unit Tests
(setup) page. The unit tests themselves are based on the Campus Solutions delivered unit test framework.

Setting Up Entity Registry Chapter _

52 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

First, select an entity. This loads the unit tests specified in the Entity Registry for that entity and all child
entities in the grid below it. Except for the entity called ‘All’, the prompt dynamically marks with an * the
entities that have no parent entity. Those can be considered top level entities. ALL is a special case as it
runs unit tests for all entities in the registry.

Image: Example of the Entity Unit Tester page for a selected entity

This example illustrates the fields and controls on the Example of the Entity Unit Tester page for a
selected entity. You can find definitions for the fields and controls later on this page.

Once an entity is selected, any unit test for that entity or any children show up. If an entity has no unit
tests, it does not appear in the grid.

Clicking the Run Unit Tests button starts running unit tests entity by entity. Each time all the unit tests
for an entity are completed the status is returned and the next entity is set for running. This is all done
automatically.

The statuses are set to either Passed or Failed - Passed telling you all the unit tests passed and Failed
meaning at least one unit test failed.

Warning! Once the unit tests start, wait until statuses are set for all unit tests. Changing pages and other
such actions interrupt the unit test process.

Note: When unit tests are run from the Entity Registry page directly, they perform a similar process.
However, instead of running tests on a per entity basis, tests are run on a per unit test basis.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 53

Click the View Unit Tests link on the Entity Unit Tester page to access the Entity Unit Tests page. The
Entity Unit Tests page displays the individual unit tests for an entity.

Image: Entity Unit Tests page

This example illustrates the fields and controls on the Entity Unit Tests page. You can find definitions for
the fields and controls later on this page.

Note: The fields on the Entity Unit Tests page are display only. Their setup is defined by selecting Unit
Test in the Action field on the Entity Registry page for the entity.

Active Specifies if the unit test is set to active and should be run.

Any unit test set to not active is not run.

Type A categorical classification of the unit test, this is mostly for
description.

Application Class The application class of the unit test you created for this entity.

Last Run Status The status the last time this unit test was run (Passed or Failed).

Last Run Datetime The last time this unit test was run.

Details Click to access the Entity Unit Test Details page.

The page displays the details of the unit test, including all
messages output. If a unit test fails, the information provided
could help you identify the reasons of the failure.

Setting Up Entity Registry Chapter _

54 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The following is an example of the Entity Unit Test Details page:

Image: Entity Unit Test Details page

This example illustrates the fields and controls on the Entity Unit Test Details page. You can find
definitions for the fields and controls later on this page.

Creating a New Entity

The way that you create a new entity varies based on the nature of the transaction that uses the entity. For
example, if the entity is used as part of a Constituent Transaction Management transaction, the entity you
create needs to be set with an entity type that uses stage records and production records. Those records
need to be created prior to creating the entity. While these specificities are described in the features’
related documentation, this section describes the generic steps that need to be taken independently from
the transactions that use the entity.

This section discusses how to:

• Create or extend stage records.

• Create an entity application class.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 55

• Create an entity.

• Generate XSD schemas.

• Set up or verify the Campus Solutions SOA framework.

• Set up logging.

Creating or Extending Stage Records
If the entity you are creating requires staging the information into a temporary record (stage record)
prior to posting to a true production record, you first need to create the stage records prior to creating the
corresponding entities. You can also extend any of the delivered stage records to meet your requirements.
The Staging table holds the staged data before it gets promoted to its matching production table.

The newly created staging record along with its matching production record are later linked together
through an entity defined in the Entity Registry component (see the Creating an Entity subsection in this
section). In the Entity Registry component, you see that the entities have a parent/child relationship. This
relationship is mostly based on the record structure of the production and the stage records.

Note: When creating the entity for the stage and production records, if you select one of the following
two delivered entity types: Staged Entity or Staged HR Entity, the system expects the staging record to
be keyed by the SCC_TEMP_ID field, and the production record keyed by EMPLID. If instead you
create your own Entity Type that also uses staging records, then you can key the stage and the production
records however you like.

The high level key used for your staging records (in most cases you use SCC_TEMP_ID) is a unique
identifier that replaces the ID used in the equivalent production table. The rest of the keys for a staging
record are similar to the equivalent production record.

A staging record is not effective-dated (it does not include the EFFDT and the EFF_STATUS fields).
This is true even if the matching production record is effective-dated. This is because the data entered in
staging can be modified many times prior to being promoted to production. Only at that time, the data is
current, and therefore the production record is set with the date the data is posted.

Setting Up Entity Registry Chapter _

56 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Below is an example of a delivered staging record with its matching production record that uses effective-
dating:

Image: Production record definition that stores Addresses (HCR_PER_ADDR_I)

This example illustrates the fields and controls on the Production record definition that stores Addresses
(HCR_PER_ADDR_I). You can find definitions for the fields and controls later on this page.

The equivalent staging record definition is defined as follows:

Image: Matching Staging record definition that stores Addresses (SCC_STG_ADDR)

This example illustrates the fields and controls on the Matching Staging record definition that stores
Addresses (SCC_STG_ADDR). You can find definitions for the fields and controls later on this page.

The delivered staging tables can be extended or modified to meet your needs. For instance, if you
customized the production record that stores addresses (HCR_PER_ADDR_I record) by adding new
fields, you may want to make sure those extra fields are also added to the its corresponding staging record
(SCC_STG_ADDR record).

Note: If you create or extend a stage record that is later used as part of the Constituent Transaction
Management framework, review the information in Developer Reference to Deploy New User
Registration, “Step 1: Creating or Extending Staging Tables.”

Creating an Entity Application Class
When creating a new entity, you must select an entity type. The entity type selected is set up with a base
application class. The new entity uses this base application class by default. However, you can create a

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 57

new application class that is specific to the entity name. This entity application class extends the base
application class.

To create a new entity application class, follow the below steps:

1. In the Application Designer, create a new application class under a new application package or reuse
an existing one. For example, the application classes setup with delivered entities were created under
the following application packages:

Delivered Transactions Application Package

AAWS Admission Transactions SAD_ADM_APPL

Academic Item Registry (AIR) SSR_AIR

Academic Progress Tracker (APT) SSR_APT

Activity Management SSR_ACTIVITY

Constituent Transaction Management (CTM) SCC_SL_TRANSACTION

Class Search SSR_CLASS

Course Shopping Cart SSR_COURSE

Delegated Access SCC_DA

Entity API SCC_COMMON:ENTITY:API

Evaluation Management SCC_GENERIC_EVALUATIONS

Notification Framework SCC_COMMON:NOTIFICATION

Research SSR_RS_RESEARCH

Rules Engine SCC_RULES_ENGINE

StudyList SSR_STUDYLIST

The above table shows the application packages used by the delivered transactions that use entity
registry.

Setting Up Entity Registry Chapter _

58 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Below is an example of the SCC_SL_TRANSACTION:INTFC application package that comprises
application classes used by Constituent Transaction Management:

Image: Example of application classes used by CTM

This example illustrates the fields and controls on the Example of application classes used by CTM.
You can find definitions for the fields and controls later on this page.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 59

Warning! It is recommended that you do not update delivered application packages to insert the entity
application class. Instead, create a separate application package. This is because any modifications
made to the delivered application package is considered a customization, and might be overridden
when a software updates are delivered.

2. Save the new application class without inserting any Peoplecode logic. Use the entity registry to
generate the Peoplecode. This task is defined in the next steps.

Creating an Entity
This section discusses how to create an entity for the application class you created in the previous section.

The new entity can be a parent entity or a child of an existing parent. For instance, delivered with your
system, the Constituent and the Application entities are parent entities of many children.

Creation considerations:

1. Name the new entity in relation with the underlying record(s) (that is, the stage and/or the production
records you are creating the entity for). For example, the entity name for the address underlying
records is Address.

2. Select a delivered entity type that corresponds to the need of the transactions that use the entity. For
example, if you create an entity for a transaction that requires temporarily staging the information to a
stage record, make sure you select an entity type that use stage records. If the delivered entity types do
not match your needs, create a new one.

3. Enter the application class name you created in the previous step. The application class you
insert here extends the Base Application Class defined in the Entity Type selected. For example,
if you create an entity using entity type Staged Entity, the application class you insert extends
the base application class SCC_COMMON:ENTITY:StagedEntity. If you used entity type Basic
Entity, the application class given inside the entity setup extends the base application class
SCC_COMMON:ENTITY:BasicEntity.

4. Enter the other required information and save. After the first save, the Properties button is displayed.
Use the Entity Properties page to add any extra needed properties. Save.

5. If the entity you created was to be a child of an existing entity (like Address is a child to Constituent
entity), you can now access the parent entity and list the newly created entity in the Children grid of
the Entity Registry page. If the entity you created was to be a parent, you can then attach children to
it.

Setting Up Entity Registry Chapter _

60 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Warning! At this stage, if you added a child entity, the message schema does not reflect this new entity.
However, if the entity is added to an incoming message and no schema validation is occurring, the
incoming message containing this data is processed and this entity is handled. As an example, the Address
entity is registered as a child entity to the Constituent entity.

Image: Example of the entity created for Address

This example illustrates the fields and controls on the Example of the entity created for Address. You can
find definitions for the fields and controls later on this page.

Generate the Application Class Peoplecode
When creating the entity application class, you do not enter peoplecode logic inside the application class.
After creating the new entity and entering the newly created application class, use the Entity Registry to
write the application class peoplecode for you.

From the Entity Registry component for the entity you created above, select Generate Code in the
Action field. In the Entity Code Generation page, select the desired options to include in the peoplecode.
The inclusions later facilitate the work of customizing the peoplecode (Custom Presave Code, Custom
Validation Code, Custom SetDefault Code and Extend Fill). Click the Generate Code button. The

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 61

AppClass Code box is shown. Select all the code and paste it in the peoplecode of the application class
you created above in Application Designer.

In Application Designer, modify the peoplecode as needed:

• Any new class that you create must declare all its own immutable keys and mutable properties:

Image: Examples of properties listed inside the SCC_SL_TRANSACTION:INTFC.Address
application class

This example illustrates the fields and controls on the Examples of properties listed inside the
SCC_SL_TRANSACTION:INTFC.Address application class. You can find definitions for the fields
and controls later on this page.

Setting Up Entity Registry Chapter _

62 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Any new class that you create may choose to override the validate() method in order to validate data
prior to saving.

Image: Examples of validation done inside the SCC_SL_TRANSACTION:INTFC.Address
application class

This example illustrates the fields and controls on the Examples of validation done inside the
SCC_SL_TRANSACTION:INTFC.Address application class. You can find definitions for the fields
and controls later on this page.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 63

• Any new class that you create may choose to override the preSave() method in order to default fields
before the user saves the application.

Image: Examples of presave logic done inside the SCC_SL_TRANSACTION:INTFC.Names
application class

This example illustrates the fields and controls on the Examples of presave logic done inside the
SCC_SL_TRANSACTION:INTFC.Names application class. You can find definitions for the fields
and controls later on this page.

• Any new class that you create may choose to override the setDefault() in order default values.

Setting Up Entity Registry Chapter _

64 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Any new class may declare get/set methods for its properties.

Image: Examples of get and set inside the SCC_SL_TRANSACTION:INTFC.Address
application class

This example illustrates the fields and controls on the Examples of get and set inside the
SCC_SL_TRANSACTION:INTFC.Address application class. You can find definitions for the fields
and controls later on this page.

Generating XSD Schemas
The features using Entity Registry can use web services. Depending on what entities are referenced by the
messages on the service operation, select an action of Generate XSD for the entity name that is considered
the top level used. Selecting the Generate XSD action creates the message schemas of the API for that
entity.

To do so, perform the following steps:

1. Access the top level entity name referred by the messages in the service operation and select the
Generate XSD action (this may not necessarily be the parent entity name. It depends on what entities
are referenced by the messages on the service operation).

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 65

2. After selecting the Generate XSD action, the entity schema is displayed:

Image: Entity schema generated for the Constituent entity (parent entity)

This example illustrates the fields and controls on the Entity schema generated for the Constituent
entity (parent entity). You can find definitions for the fields and controls later on this page.

3. Select the entire generated schema and paste it into the appropriate messages to modify the overall
schema.

4. Navigate to PeopleTools, Integration Broker, Integration Setup, Messages. Search for the relevant
message. In the Schema tab, click the Edit Schema button and paste in the generated schema. Save the
component.

Setting Up Entity Registry Chapter _

66 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

For example, suppose you generated the schema for the Constituent entity. Navigate to the message
Schema page. Search for the message called SCC_ENTITY_CONSTITUENT. Click the Edit Schema
button and paste the generated schema as shown in screen shot below.

Image: Constituent message partial schema

This example illustrates the fields and controls on the Constituent message partial schema. You can
find definitions for the fields and controls later on this page.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 67

Note: The messages where you paste the schema are entity messages. These messages must
be created with a message type of Part NonRowset based. This means they can be used by
any Nonrowset based message. The web services created for your transaction can also refer
to delivered entity messages. For example, a message with AAWS admission transaction,
SAD_SUBMITAPPL_REQ message, calls both SCC_ENTITY_CONSTITUENT and
SCC_ENTITY_APPLICANT message schema in its schema.
It is easy to maintain the entity messages as their schema can be generated from the Entity Registry
page. Entity messages can be reused in any request or response message as per your requirement.

Image: Example of a web service message calling the schema of a Part NonRowset message

This example illustrates the fields and controls on the Example of a web service message calling the
schema of a Part NonRowset message. You can find definitions for the fields and controls later on this
page.

5. Once the schemas have been updated, the service WSDL needs to be republished in order to have
all the new or updated entities recognized. In order to do that delete the existing WSDL under

Setting Up Entity Registry Chapter _

68 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

PeopleTools, Integration Broker, Service Utilities, Service Administration, WSDL. Select the
appropriate service WSDL and press delete.

Republish the service WSDL under PeopleTools, Integration Broker, Web Services, Provide Web
Service.

Setting Up or Verifying the Campus Solutions SOA Framework
During installation, the system automatically inserts configuration data into the Campus Solutions SOA
Framework setup tables.

Access the Request Handlers component for the service operations that you created or are planning
to use under Set Up SACR, System Administration, Integrations, Request Handlers. For each of the
service operations you plan to use, ensure the Request Handler page contains the proper information. The
application class path should be properly entered.

Setting Up Logging
Access the Logging component to enable and configure the logging feature under Set Up SACR, System
Administration, Integrations, Logging.

Image: Example of how the Logging page can be set up

This example illustrates the fields and controls on the Example of how the Logging page can be set up.
You can find definitions for the fields and controls later on this page.

Note: You should not enable logging in a production environment. SOA framework logging is only
appropriate for a testing, demo or development environment or when performing critical troubleshooting
activities.

See PeopleTools: Integration Broker.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 69

Entity Application Class Reference

This section discusses the delivered application classes and interfaces that you can use for creating or
modifying entities.
Bundle 48. New application classes:

SCC_COMMON:AUDIT:AuditRecord – to log data to audit records from entity registry

SCC_COMMON_UTIL:BitArray – to parse through bit data

interface SCC_COMMON:ENTITY:IEntity
Implementing Classes: SCC_COMMON:ENTITY:FileAttachment,
SCC_COMMON:ENTITY:AbstractEntity

See Also: BasicEntity, StagedEntity, StagedHREntity

Summary
Property Summary:

public Array of string baseProps: A list of properties that are controlled on the base
entities, so the property name cannot be changed.

public Array of ChildEntity ChildEntityArray: An array of all the ChildEntities of the
current entity.

public Record data: This entities a backing record.

public boolean entityDelete: Marks this entity for deletion, and prevents save.

public string entityID: ID of the entity from the registry.

public string entityName: The name of the entity as defined in the registry.

public Array of DataKey keyCollection: A collection of key values to be used when
population of this entity occurs.

public IEntity parent: parent Entity, null if it is at the top level of tree.

public ChildEntity parentCE: The child entity that encompasses all the entities of
a particular type under the parent.

public string SCC_ENTITY_INST_ID: Entity Instance Id.

public boolean selfServiceMode: Self Service mode flag.

Setting Up Entity Registry Chapter _

70 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public boolean STAGE_MODE: Specifies if this entity is currently in
Stage Mode (True) and working with the stage record, or in
Production Mode (False) and working with the production
record.

public string UPDATE_RULE: Specifies the update rule to use for the
purposes of Data Update Rule.

public string USER_CONTEXT: The user that this is being run on behalf
of, since adds and updates may be done from administrative
mode on behalf of a given user.

public Array of string XSDFieldList: A string list of all the fields for the current
entity for the XSD. This is used in conjunction with buildXSD
to determine if key fields are required, based on if their parent
has the same key.

Method Summary:

public void buildXSD(XmlNode xmlnode): Builds the xml schema section
pertaining to this entity.

public void clearDataPreImage(): Clears the DataPreImage for this entity
and all its children.

public void delete(boolean p_entityDelete): Sets entityDelete property for
this entity and all its children.

public void demote(number p_tempID): Moves data from production
records to staging record.

public void destroy(): Perform cleanup activity on this entity.

public void fill(Record p_inRec out, boolean p_clearState): Fill (Populate)
this entity using the given record, and populates all children
based on the key structure.

public void fillFromKeys(boolean p_clearState): Performs a select by key
based on the fields on the underlying record. This should be
run on the top level entity to start a fill.

public void fromXmlNode(XmlNode parentNode): Converts data from
XML to the entity model.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 71

public Rowset generateRowset(): This method generates a rowset of data for
the underlying record of this entity based on the keys of the
parent. It is used as part of the fill process for building out the
entity tree. The method is called as if it were a static method,
 so it is not associated with any particular entity data. The base
implementation dynamically matches keys from the parent to
the child and builds the query for the rowset based on that.

public string generateXSD(): Begins generation of an xml schema, based on
the registry using this entity as the root.

public ChildEntity getChildEntity(string p_entityID): Retrieves the ChildEntity
Object based on the entity ID.

public string getLOVDescr(string propname): Returns the LOV Description
based on the associated property name when parsed from
XML.

public number getMaxSeqNbrSQL(): Retrieves the maximum sequence
number from the database based on the key structure of the
current entity.

public any getProperty(string propname)

public void hardDelete(MessageLogBase p_messageLog out): Performs
the actual delete of all objects marked with the entityDelete
flag.

public boolean hasEffdt(): Checks if this entity has an effective date.

public boolean hasEffseq(): Checks if this entity has an effective sequence.

public boolean hasKey(string p_keyname): Checks if the current entity has a
particular field as a key.

public boolean isEqualKeys(IEntity p_entity): Determine Entity Key Equality.

public boolean isEqualKeysRecord(Record p_rec): Allows the given record
to be compared with this entity for equality. Compares for
equality based on the underlying entity record content.
 RECOMMENDATION: Override this method if you need to
do custom equality checking.

public void prePublish(Rowset p_changesRS out): Uses the
workflowPreimage and post images of the entity to build a
PSCAMA Rowset in preparation for publish. The parameter
Rowset may be Null. Data should be appended to this rowset if
it is NON-Null.

public void preSave(): Perform pre-Save activities on this entity.

Setting Up Entity Registry Chapter _

72 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public void preSaveChildren()

public void PreSaveFirst(): Pre-Save code that only runs on the first entity
of a child array.

public void promote(string emplID, MessageLogBase p_log out): Moves
Data from Staging to Production Records (does not validate or
save).

public void publish(Rowset p_changesRS, boolean p_onlineMode): Takes
a PSCAMA based rowset of information to be published
during workflow Uses that information to construct a Message
and according to the onlineMode publishes the Message data
in realtime or to the batch delay table.

public void save(MessageLogBase p_messageLog out): Save this entity
and all its children.

public void setChildren(): Builds out the structure of the ChildEntityArray
object based on the registry.

public void setDefault(): Sets default values for record fields.

public void setProperty(string propname, any value)

public void setStageMode(boolean p_stageInd): Changes the Stage_Mode
property, as well as any related records. This should not be
used once data has been set, to convert data use promote or
demote.

public void setUserContext(string p_userContext): Sets the value of the
UserContext property.

public void toXmlNode(XmlNode parentNode): Converts the data from
the entity structure to XML.

public void updateFromRecord(Record rec): Updates by matching fields
in the record to fields in the underlying record on the entity.
 Values are only set if the value has changed. Values are set
using properties, so any additional get-set logic is handled.

public void updateKeyFields(): Updates the keyfields of all children based
on the current entity. This allows key changes to roll down
properly.

public void validate(MessageLogBase p_messageLog out): Validate this
entities' contents (and all its children).

public void validateFirst(MessageLogBase p_messageLog out): Validation
code that only runs on the first entity of a child array.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 73

public void workflow(boolean p_onlineMode): Orchestrates the prepublish
and publish methods for this entity and all children.

Details
Property Details:

baseProps public Array of string

ChildEntityArray public Array of ChildEntity

data public Record

entityDelete public boolean

entityID public string

entityName public string

keyCollection public Array of DataKey

parent public IEntity

parentCE public ChildEntity

SCC_ENTITY_INST_ID public string

selfServiceMode public boolean

STAGE_MODE public boolean

UPDATE_RULE public string

USER_CONTEXT public string

XSDFieldList public Array of string

Method Details:

buildXSD Parameters:

XmlNode xmlnode: The Tools XmlNode object of the parent
that should be continued by this entity.

clearDataPreImage N/A

Setting Up Entity Registry Chapter _

74 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

delete Parameters:

boolean p_entityDelete: The value to be set for the
entityDelete property.

demote Parameters:

number p_tempID: The tempid to replace the emplid with.

destroy N/A

fill Parameters:

Record p_inRec(out): This record populates the record
underlying this entity.

boolean p_clearState: If the clearstate is true the datapreimage
is populated as well.

fillFromKeys Parameters:

boolean p_clearState: Whether or not to RESET this entities
pre-image.

fromXmlNode Parameters:

XmlNode parentNode: The XML node to pull from.

generateRowset Return:

Rowset - a rowset populated based on the parent keys, or null
if no rows are found.

generateXSD Return:

string - the XSD as a string.

getChildEntity Parameters:

string p_entityID: The entity ID, based on the registry, of the
ChildEntity object to retrieve.

Return:

ChildEntity

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 75

getLOVDescr Parameters:

string propname: The property name to get a LOV Description
based on.

Return:

string

getMaxSeqNbrSQL Return:

number - the maximum sequence number found.

getProperty Parameters:

string propname

Return:

any

hardDelete Parameters:

MessageLogBase p_messageLog(out): The MessageLog
object to log all errors/warnings to.

hasEffdt Return:

boolean - true if it has an effective date false otherwise.

hasEffseq Return:

boolean - true if it has an effective sequence false otherwise.

hasKey Parameters:

string p_keyname: The name of the field to check.

Return:

boolean - true if the field is a key, false if the field is not a key
or the entity does not include it.

isEqualKeys Parameters:

IEntity p_entity: The entity to compare the current entity to.

Return:

boolean - true if the entity keys are equal false otherwise.

Setting Up Entity Registry Chapter _

76 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

isEqualKeysRecord Parameters:

Record p_rec

Return:

boolean

prePublish Parameters:

Rowset p_changesRS(out)

preSave N/A

preSaveChildren N/A

PreSaveFirst N/A

promote Parameters:

string emplID: The emplid for production to replace the
tempid from staging.

MessageLogBase p_log(out): The MessageLog object to log
all errors/warnings to.

publish Parameters:

Rowset p_changesRS

boolean p_onlineMode

save Parameters:

MessageLogBase p_messageLog(out): The messagelog object
to log errors and warnings to.

setChildren N/A

setDefault N/A

setProperty Parameters:

string propname

any value

setStageMode Parameters:

boolean p_stageInd: The value to set the stage mode to, if the
value passed matches the current stage mode no changes are
made.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 77

setUserContext Parameters:

string p_userContext: The value set for the property
UserContext.

toXmlNode Parameters:

XmlNode parentNode: The XML parent node to push the xml
to.

updateFromRecord Parameters:

Record rec: The record object to copy data from.

updateKeyFields N/A

validate Parameters:

MessageLogBase p_messageLog(out): The messagelog object
to log errors and warnings to.

validateFirst Parameters:

MessageLogBase p_messageLog(out): The MessageLog
object to log all errors/warnings to.

workflow Parameters:

boolean p_onlineMode

abstract class SCC_COMMON:ENTITY:AbstractEntity
Implemented Interfaces: SCC_COMMON:ENTITY:IEntity

Direct Known Subclasses: SCC_COMMON:ENTITY:StagedEntity,
SCC_COMMON:ENTITY:StagedHREntity, SCC_COMMON:ENTITY:BasicEntity,
SCC_COMMON:ENTITY:WorkEntity

See Also: BasicEntity, StagedEntity, StagedHREntity

Summary
Property Summary

public Array of string baseProps: A list of properties that are controlled on the base
entities, so the property name cannot be changed.

public Array of ChildEntity ChildEntityArray: An array of all the ChildEntities of the
current entity. The childEntities are determined by the entity
registry, and populated when the entity is instansiated.

Setting Up Entity Registry Chapter _

78 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public Record data: The backing record for this entity.

public Record dataPreimage: The preimage of the backing record for this
entity. The entity is compare against the preimage prior to
save.

public boolean DO_SAVE: Specifies if the entity is allowed to save.

protected AnyHashMap dynamicProperties

public boolean entityDelete: Marks this entity for deletion, and prevents save.

public string entityID: ID of the entity from the registry.

protected Record EntityMetaData

public string entityName: The name of the entity as defined in the registry.

protected boolean hasAuditRowAddDttm

protected boolean hasAuditRowAddOprid: A value, set by testForAudit, that
speficies if this entity has audit fields. It is used during save
time to determine if the audit fields need to be updated.

protected boolean hasAuditRowUpdDttm

protected boolean hasAuditRowUpdOprid

protected Array of string ignoreFields: DEPRECATED. ignoreFields is no longer
used; if it is found it is used by EntityPropBuilder during the
upgrade to the new property system. The array of names of
fields to ignore for the purposes of moving data to and from
xml, pushing a new field onto this array adds it to the list.

public Array of DataKey keyCollection

public IEntity parent: Parent Entity, null if it is at the top level of tree.

public ChildEntity parentCE: The child entity that encompasses all the entities of
a particular type under the parent.

public string prodRecordName: The name of the production record is
populated here based on the registry.

protected Rowset PropertyMetaData

protected string RECORD_NAME: The name of the current record underlying
this entity.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 79

public string SCC_ENTITY_INST_ID: A unique identifier for the specific
row of data.

public datetime SCC_ROW_ADD_DTTM: The Datetime the row of data
was added, this is part of the who columns. This property
corresponds to this field, if it exists on the record, if not it does
nothing.

RECOMMENDATION: Do not override get & set.

public string SCC_ROW_ADD_OPRID: The Person who added the
row of data, this is part of the who columns. This property
corresponds to this field, if it exists on the record, if not it does
nothing.

RECOMMENDATION: Do not override get & set.

public datetime SCC_ROW_UPD_DTTM: The Datetime the row of data
was update, this is part of the who columns. This property
corresponds to this field, if it exists on the record, if not it does
nothing.

RECOMMENDATION: Do not override get & set.

public string SCC_ROW_UPD_OPRID The Person who updated the
row of data, this is part of the who columns. This property
corresponds to this field, if it exists on the record, if not it does
nothing.

RECOMMENDATION: Do not override get & set.

public boolean selfServiceMode: If the entity is in selfServiceMode.

public boolean STAGE_MODE: Specifies if this entity is currently in
Stage Mode (True) and working with the stage record, or in
Production Mode (False) and working with the production
record.

public string UPDATE_RULE: Specifies the update rule to use for the
purposes of Data Update Rule.

public string USER_CONTEXT: The user that this is being run on behalf
of, since adds and updates may be done from administrative
mode on behalf of a given user, or %UserId.

public Record workflowPreimage: The pre-image object to use for workflow.

protected string XSDCustomNS: The namespace to use for custom attributes in
the schema, found and set during generateXSD.

Setting Up Entity Registry Chapter _

80 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public Array of string XSDFieldList: A string list of all the fields for the current
entity for the XSD. This is used in conjunction with buildXSD
to determine if key fields are required, based on if their parent
has the same key.

protected string XSDNS: The namespace to use for the schema, found and set
during generateXSD.

Constructor Summary:

public void AbstractEntity(IEntity p_parent): The Constructor.

Method Summary:

protected string applyDataKey(string p_queryString)

protected string buildCSVString(array of any p_arrValues, string p_metaTag)

protected void buildPropertyMetaDataCache()

public void buildXSD(XmlNode xmlnode): Builds the xml schema section
pertaining to this entity. The implementation builds and
populates the schema based on the underlying record, ignoring
any fields in the ignore array. Keys that roll down from the
parent are not marked required on the child.

RECOMMENDATION: Only override if the entity requires a
custom schema.

protected void buildXSDChildren(XmlNode xmlnode): Iterates through
the ChildEntityArray and issues a buildXSD against each
ChildEntity, which in turn creates a temporary entity and calls
buildXSD. Base implementation uses the entity registry.

RECOMMENDATION: Do not override.

protected void changeRecord(string p_recname): Changes the record to the
record name specified.

RECOMMENDATION: Do not override.

public void clearDataPreImage(): Clears the Data preimage and workflow
preImage.

RECOMMENDATION: Do not override.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 81

protected void clearDataPreImageChildren(): Iterates through the
ChildEntityArray and issues a clearDataPreImage against each
ChildEntity, which in turn calls clearDataPreImage on all of
the entities it contains.

RECOMMENDATION: Do not override.

protected void commonValidate(MessageLogBase p_messageLog out,
 number p_validateArgs):

Runs the record based validations and outputs results to the
log. Also invokes validateChildren. validateChildren is called
before record based validations. Validation Arguments<table>
<tr><td>%Edit_DateRange</td><td>Reasonable Date Range
(Is the date contained within the specified reasonable date
range?)</td></tr> <tr><td>%Edit_OneZero</td><td>1/0 (
Do all 1/0 fields contain only a 1 or 0?)</td></tr> <tr><td>
%Edit_PromptTable</td><td>Prompt Table (Is field data
contained in the specified prompt table?)</td></tr> <tr><td>
%Edit_Required</td><td>Required Field (Do all required
fields contain data? For numeric or signed fields, it checks that
they do not contain NULL or 0 values.)</td></tr> <tr><td>
%Edit_TranslateTable</td><td>Translate Table (Is field data
contained in the specified translate table?)</td></tr> <tr><td>
%Edit_YesNo</td><td>Yes/No (Do all yes/no fields only
contain only yes or no data?)</td></tr> </table>

protected void defaultChildren(): Iterates through the ChildEntityArray
and issues a setDefault against each ChildEntity, which in
turn calls setDefault on all of the entities it contains. Base
implementation uses the entity registry.

RECOMMENDATION: Do not override.

public void delete(boolean p_entityDelete): Marks this entity and all its
children for deletion at save time - soft delete.

RECOMMENDATION: Do not override this method.

protected void deleteChildren(boolean p_entityDelete): Iterates through the
ChildEntityArray and issues a delete against each ChildEntity,
which in turn calls delete on all of the entities it contains. Base
implementation uses the entity registry.

RECOMMENDATION: Do not override.

Setting Up Entity Registry Chapter _

82 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public void demote(number p_tempID): Moves data from production
records to staging record.

RECOMMENDATION: This must be implemented, but is
only used if the entity is staged. In the implementation make
sure to call demoteChildren to cause demote to work with the
registry.

protected void demoteChildren(number p_tempID): Iterates through
the ChildEntityArray and issues a demote against each
ChildEntity, which in turn calls demote on all of the entities it
contains. Base implementation uses the entity registry.

RECOMMENDATION: Do not override.

public void destroy(): Perform cleanup activity on this entity.

public boolean entityFieldUpdateNeeded(Rowset p_DataUpdateRule, string p
_fieldName, any oldValue)

RECOMMENDATION: Do not override

public boolean entityTypeUpdateNeeded(Rowset p_DataUpdateRule, any p_
entityType, boolean p_newFlag)

RECOMMENDATION: Do not override.

public boolean entityTypeUpdateRequested(Rowset p_DataUpdateRule, any p
_entityType)

RECOMMENDATION: Do not override

public boolean entityUpdateRequested(Rowset p_DataUpdateRule)

RECOMMENDATION: Do not override.

public void fill(Record p_inRec out, boolean p_clearState): Populates (
fills) this entity from the given record.

RECOMMENDATION: Do not override.

protected void fillChildren(boolean p_clearState): Iterates through the
ChildEntityArray and issues a fill against each ChildEntity,
 which in turn calls fill on all of the entities it contains. Base
implementation uses the entity registry.

RECOMMENDATION : Do not override.

public void fillFromKeys(boolean p_clearState): Performs a select by key
based on the fields on the underlying record. This should be
run on the top level entity to start a fill.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 83

protected void fillLOVDescrs(): Re-initializes and Populates the LOV
Description Hash Map shmLOVDescr based on the current
property values.

public void fromXmlNode(XmlNode parentNode): Retrieves data to
properties based on the fields in the record. Fields marked
ignore are not Processed. Entity Element Names, wrapping of
the ChildEntities or embedding is based on the entity registry.

RECOMMENDATION: Only override if the xml for this
entity has to be custom.

protected void fromXmlNodeChildren(XmlNode parentNode): Iterates
through the ChildEntityArray and issues a fromXMLNode
against each ChildEntity, which in turn calls fromXMLNode
on all of the entities it contains. Base implementation uses the
entity registry.

RECOMMENDATION: Do not override.

public Rowset generateRowset(): This method generates a rowset of data for
the underlying record of this entity based on the keys of the
parent. It is used as part of the fill process for building out the
entity tree. The method is called as if it were a static method,
 so it is not associated with any particular entity data. The base
implementation dynamically matches keys from the parent to
the child and builds the query for the rowset based on that.

RECOMMENDATION: If the key structure between the
parent and child does not match up, or the rowset needs to
be built using another method (i.e. a service) override this
method.

public string generateXSD(): Generates the xml schema with this node as
the root.

RECOMMENDATION: Do not override.

public ChildEntity getChildEntity(string p_entityID): Retrives the ChildEntity
Object based on the entity ID.

RECOMMENDATION: Do not override.

protected CSUserDefaults getCSUserDefaults(): Retrieves the CSUserDefaults.

RECOMMENDATION: Do not override.

public DataKey getDataKey(): Retrieves the dataKey for this entity.

RECOMMENDATION: Do not override.

Setting Up Entity Registry Chapter _

84 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public Record getEntPropsByPropertyName(string propname): Returns the
EntityProperty Record (SCC_ENT_PROPS) based on the
property name.

protected string getFullEntityPathName()

public array of string getIgnoreFields(): A method to get the current ignorefields,
 used for upgrade.

protected InstallationHCM getInstallationHCM(): Retrieves the HCM Installation
Defaults.

RECOMMENDATION: Do not override.

public string getLOVDescr(string propname): Returns the LOV Description
based on the associated property name when parsed from
XML.

protected string getLOVValue(Record p_recProp, string p_code)

public number getMaxSeqNbrSQL(): Retrieves the maximum sequence
number from the database based on the keystructure of
the current entity. This method is irrelevant if there are no
sequence numbers for the entity.

RECOMMENDATION: Override if there is a sequence
number and it is not related to all the keys.

protected IEntity getParent(): Retrieves the parent Entity.

RECOMMENDATION: Do not override.

public any getProperty(string propname)

protected any getPropertyByMetaRec(Record propMetaRec)

protected string getRecordName(): Retrieves the name of the current record on
this entity.

RECOMMENDATION: Do not override.

public string getTagByFieldName(string fieldname): Returns the xml
tag based on the field name. If metadata exists that is used,
 otherwise it returns the field name. This method should no
longer be overriden! The xml tag is now based on the property
meta data.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 85

public void hardDelete(MessageLogBase p_messageLog out): Deletes the
entity object and all its child entities from the database, based
on the entityDelete flag.

RECOMMENDATION: Do not override this method.

protected void hardDeleteChildren(MessageLogBase p_messageLog out):
Iterates through the ChildEntityArray and issues a hardDelete
against each ChildEntity, which in turn calls hardDelete on all
of the entities it contains. Base implementation uses the entity
registry.

RECOMMENDATION: Do not override.

public boolean hasEffdt()

public boolean hasEffseq()

public boolean hasKey(string p_keyname): Check if the entity has a particular
field as a key.

RECOMMENDATION: Do not override.

public boolean isEqualKeys(IEntity p_entity): Allows the given entity
to be compared with this entity for equality. The Base
implementation compares for equality based on the underlying
entity record contents.

RECOMMENDATION: Override this method if you need to
do custom equality checking.

public boolean isEqualKeysRecord(Record p_rec): Allows the given record
to be compared with this entity for equality. Compares for
equality based on the underlying entity record content.

RECOMMENDATION: Override this method if you need to
do custom equality checking.

public void populateAudit(): Populates the who column data, this method
is invoked prior to save. This allows handling of the who
columns to be more or less dynamic. If there are no who
columns this method does nothing .

RECOMMENDATION: Do not override.

Setting Up Entity Registry Chapter _

86 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public void prePublish(Rowset p_changesRS out): Uses the
workflowPreimage and post images of the entity to build a
PSCAMA Rowset in preparation for publish. The parameter
Rowset may be Null. Data should be appended to this rowset if
it is NON-Null.

RECOMMENDATION: Override if pre-publish logic is
required.

public void preSave(): Allows the opportunity for an entity to perform any
pre Save activities. The Base implementation does nothing.
 Presave is automatically called from save, from the top level
entity, and runs the presave logic before invoking preSave
children.

RECOMMENDATION: Override this method if the entity
needs to do last minute preSave processing.

public void preSaveChildren(): Iterates through the ChildEntityArray and
issues a preSave against each ChildEntity, which in turn calls
preSave on all of the entities it contains. Base implementation
uses the entity registry. Presave is automatically called from
save, from the top level entity, and runs the presave logic
before invoking preSave children.

RECOMMENDATION: Do not override.

public void preSaveFirst(): Similar to presave, however, this method is
called once per childEntity, prior to any other presave activity
to allow for presave activity that may act across all entities in
the childEntity. The Base implementation does nothing.

RECOMMENDATION: Override this method if the entity
needs to do last minute preSave processing crossing entity
boundaries.

public void promote(string p_emplID, MessageLogBase p_log out):
Moves Data from Staging to Production Records (does not
validate or save).

RECOMMENDATION: This must be implemented, but is
only used if the entity is staged. In the implementation make
sure to call promoteChildren to cause promote to work with
the registry.

protected void promoteChildren(string p_emplID, MessageLogBase p_
log out): Iterates through the ChildEntityArray and issues a
promote against each ChildEntity, which in turn calls promote
on all of the entities it contains. Base implementation uses the
entity registry.

RECOMMENDATION: Do not override.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 87

public void publish(Rowset p_changesRS, boolean p_onlineMode): Takes
a PSCAMA based rowset of information to be published
during workflow Uses that information to construct a Message
and according to the onlineMode publishes the Message data
in realtime or to the batch delay table.

RECOMMENDATION: Override if publish logic is required.

public Rowset retrieveDataRule(): Uses the entityID and Update Rule Name
to read Data Update Rule information.

RECOMMENDATION: Do not override.

public void save(MessageLogBase p_messageLog out): Base
implementation, calls presave and issues save for all children
then a save for this entity.

RECOMMENDATION: Do not override.

protected void saveChildren(MessageLogBase p_messageLog out): Iterates
through the ChildEntityArray and issues a Save against each
ChildEntity, which in turn calls Save on all of the entities it
contains. Base implementation uses the entity registry.

RECOMMENDATION: Do not override.

public void setChildren(): Builds out the ChildEntityArray based on the
entity registry.

RECOMMENDATION: Do not override.

protected void setData(Record p_dataRec): Sets the Data record.

RECOMMENDATION: Do not override.

protected void setDataPreImage(Record p_dataPreImageRec): Sets the Data
preimage.

RECOMMENDATION: Do not override.

public void setDefault(): Base implementation sets the default value for
each field using the Field setDefault method if the field has not
already been marked changed.

RECOMMENDATION: Override if required

protected void setEntityID(string p_entityID): Sets the entity ID, and retrieves
the related information from the registry.

RECOMMENDATION: Do not override.

Setting Up Entity Registry Chapter _

88 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

protected void setKeyList(): Sets the list of key fields to private instance
variable keyList.

RECOMMENDATION: Do not override.

public void setProperty(string propname, any value)

protected void setPropertyByMetaRec(Record propMetaRec, any value)

public void setStageMode(boolean p_stageInd): Sets the stage mode and
changes the underlying record to stage/production for this
entity and all children. This implementation does nothing since
stage mode is not required.

RECOMMENDATION: Override if the entity is Staged.

public void setUpdateRule(string p_UpdateRule): Sets a specific update
rule.

RECOMMENDATION: Do not override.

public void setUpdateRuleByTransName(string p_transName): Sets the
update rule based on the transaction name in the setup table.

RECOMMENDATION: Do not override.

public void setUserContext(string p_userContext): Sets the user context
for this entity.

RECOMMENDATION: Do not override.

protected void testForAudit(): Checks if the underlying record has the audit
fields and sets the property hasAudit.

RECOMMENDATION: Do not override.

public void toXmlNode(XmlNode parentNode): Pushes data to the
XML structure from the entity. Fields marked ignore are
not Processed. Entity Element Names, wrapping of the
ChildEntities or embedding is based on the entity registry. The
value of properties corresponding to the fields are pushed.

RECOMMENDATION: Only override if the xml for this
entity has to be custom.

protected void toXmlNodeChildren(XmlNode parentNode): Iterates through
the ChildEntityArray and issues a toXMLNode against each
ChildEntity, which in turn calls toXMLNode on all of the
entities it contains. Base implementation uses the entity
registry.

RECOMMENDATION: Do not override.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 89

public void updateChildFields(string propname, array of ChildEntity cea):
Sets the value of a specific property on all ChildEntites to
match the current entity.

RECOMMENDATION: Do not override.

public void updateFromRecord(Record rec): Updates by matching fields
in the record to fields in the underlying record on the entity.
 Values are only set if the value has changed. Values are set
using properties, so any additional get-set logic is handled.

protected void updateKeyFields(): Updates all the key fields of the child
entities that match the key fields on this entity.

RECOMMENDATION: Do not override.

public void validate(MessageLogBase p_messageLog out): Validates
the entity object if entity is not marked for deletion. NOTE:
commonValidate invokes validateChildren. validateChildren is
called before record based validations.

RECOMMENDATION: Override this method if the entity
requires custom validation. Use commonValidate to call
the system edits for control over exactly which edits run, or
%Super. Validate if you want them all.-- This method does the
following standard system edits:- Required fields are present-
Validates all 1/0 fields contain only a 1 or a 0- Validates all
translate fields have a valid value- Validates all YesNo fields
contain a Y or an N- Validates all prompt edit fields have a
valid value.

protected void validateChildren(MessageLogBase p_messageLog out):
Iterates through the ChildEntityArray and issues a validate
against each ChildEntity, which in turn calls validate on all of
the entities it contains. Base implementation uses the entity
registry.

RECOMMENDATION: Do not override.

public void validateFirst(MessageLogBase p_messageLog out): Allows
validations to be performed on all entities under a childEntity;
this is valuable in doing validation against other entities under
the same childEntity.

RECOMMENDATION: Override this method if the entity
requires custom validation crossing entity boundaries.

public void workflow(boolean p_onlineMode): Orchestrates the prepublish
and publish methods for this entity and all children.

RECOMMENDATION: Do not override.

Setting Up Entity Registry Chapter _

90 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Details
Property Details:

baseProps public Array of string

ChildEntityArray public Array of ChildEntity

data public Record

dataPreimage public Record

DO_SAVE public boolean

dynamicProperties protected AnyHashMap

entityDelete public boolean

entityID public string

EntityMetaData protected Record

entityName public string

hasAuditRowAddDttm protected boolean

hasAuditRowAddOprid protected boolean

hasAuditRowUpdDttm protected boolean

hasAuditRowUpdOprid protected boolean

ignoreFields protected Array of string

keyCollection public Array of DataKey

parent public IEntity

parentCE public ChildEntity

prodRecordName public string

PropertyMetaData protected Rowset

RECORD_NAME protected string

SCC_ENTITY_INST_ID public string

SCC_ROW_ADD_DTTM public datetime

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 91

SCC_ROW_ADD_OPRID public string

SCC_ROW_UPD_DTTM public datetime

SCC_ROW_UPD_OPRID public string

selfServiceMode public boolean

STAGE_MODE public boolean

UPDATE_RULE public string

USER_CONTEXT public string

workflowPreimage public Record

XSDCustomNS protected string

XSDFieldList public Array of string

XSDNS protected string

Constructor Details:

AbstractEntity Parameters:

IEntity p_parent: The parent of this entity, or null if this is the
top of the entity tree.

Method Details:

applyDataKey Parameters:

string p_queryString

Return:

string

buildCSVString Parameters:

array of any p_arrValues

string p_metaTag

Return:

string

buildPropertyMetaDataCache N/A

Setting Up Entity Registry Chapter _

92 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

buildXSD Parameters:

XmlNode xmlnode: The Tools XmlNode object of the parent
that should be continued by this entity.

buildXSDChildren Parameters:

XmlNode xmlnode: The node of the current entity that all
children see as the parent.

changeRecord Parameters:

string p_recname: The name of the record to have this entity
use.

clearDataPreImage N/A

clearDataPreImageChildren N/A

commonValidate Parameters:

MessageLogBase p_messageLog(out): The message log to log
any errors to.

number p_validateArgs: Specify the validations to be run in
a format like (%Edit_DateRange + %Edit_OneZero +Edit_
Required).

defaultChildren N/A

delete Parameters:

boolean p_entityDelete: True to delete this entity and False to
"undelete".

deleteChildren Parameters:

boolean p_entityDelete: True to delete this entity and False to
"undelete".

demote Parameters:

number p_tempID: The tempid to replace the emplid with.

demoteChildren Parameters:

number p_tempID: The Tempid to associated with all demoted
data.

destroy N/A

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 93

entityFieldUpdateNeeded Parameters:

Rowset p_DataUpdateRule

string p_fieldName

any oldValue

Return:

boolean

entityTypeUpdateNeeded Parameters:

Rowset p_DataUpdateRule

any p_entityType

boolean p_newFlag

Return:

boolean – True if the Data Update Rule specifies the entity
type should be updated.

entityTypeUpdateRequested Parameters:

Rowset p_DataUpdateRule: The data update rule.

any p_entityType: The entity type value (for example, For the
Address entity, type values include: DORM, HOME, MAIL,
 and so on.)

Return:

boolean - True if any row of the Data Update Rule Detail (
for this entity AND type) has an action not equal to "Do Not
Update" (N).

entityUpdateRequested Parameters:

Rowset p_DataUpdateRule: The data update rule.

Return:

boolean - True if any row of the Data Update Rule Detail (for
this entity) has an action not equal to "Do Not Update" (N).

fill Parameters:

Record p_inRec(out): The record structure that is used to
populate this entity.

boolean p_clearState: Whether or not to RESET this entities
pre-image.

Setting Up Entity Registry Chapter _

94 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

fillChildren Parameters:

boolean p_clearState

fillFromKeys Parameters:

boolean p_clearState: Whether or not to RESET this entities
pre-image.

fillLOVDescrs N/A

fromXmlNode Parameters:

XmlNode parentNode: The parent node to add this node to.

fromXmlNodeChildren Parameters:

XmlNode parentNode: The node of the current entity that all
children see as the parent.

generateRowset Return:

Rowset - a rowset populated based on the parent keys, or null
if no rows are found.

generateXSD Return:

string - the XML Schema as a string.

getChildEntity Parameters:

string p_entityID: The entity ID, based on the registry, of the
ChildEntity object to retrieve.

Return:

ChildEntity

getCSUserDefaults Return:

CSUserDefaults

getDataKey Return:

DataKey

getEntPropsByPropertyName Parameters:

string propname: The property name.

Return:

Record

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 95

getFullEntityPathName Return:

string

getIgnoreFields Return:

array of string

getInstallationHCM Return:

InstallationHCM

getLOVDescr Parameters:

string propname: The property name to get a LOV Description
based on.

Return:

string

getLOVValue Parameters:

Record p_recProp

string p_code

Return:

string

getMaxSeqNbrSQL Return:

number - the maximum sequence number found.

getParent Return:

IEntity

getProperty Parameters:

string propname

Return:

any

getPropertyByMetaRec Parameters:

Record propMetaRec

Return:

any

Setting Up Entity Registry Chapter _

96 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

getRecordName Return:

string - The record name

getTagByFieldName Parameters:

string fieldname: The fieldname to search on.

Return:

string

hardDelete Parameters:

MessageLogBase p_messageLog(out): the message log

hardDeleteChildren Parameters:

MessageLogBase p_messageLog(out): the message log

hasEffdt Return:

boolean

hasEffseq Return:

boolean

hasKey Parameters:

string p_keyname: The name of the field to check.

Return:

boolean - true, the field exists and is a key, false, the field is
not a key, or does not exist.

isEqualKeys Parameters:

IEntity p_entity

Return:

boolean

isEqualKeysRecord Parameters:

Record p_rec

Return:

boolean

populateAudit

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 97

prePublish Parameters:

Rowset p_changesRS(out)

preSave N/A

preSaveChildren N/A

preSaveFirst N/A

promote Parameters:

string p_emplID

MessageLogBase p_log(out): The MessageLog object to log
all errors/warnings to.

promoteChildren Parameters:

string p_emplID: The EMPLID key to associate with the
promoted data.

MessageLogBase p_log(out)

publish Parameters:

Rowset p_changesRS

boolean p_onlineMode

retrieveDataRule Return:

Rowset - the Data Update Rule information for the current
entity in a rowset (Level 0 - SCC_DUR_HDR, Level 1 - SCC
_DUR_DTL).

save Parameters:

MessageLogBase p_messageLog(out): the message log

saveChildren MessageLogBase p_messageLog(out): the message log

setChildren N/A

setData Parameters:

Record p_dataRec: The record to set data to.

setDataPreImage Parameters:

Record p_dataPreImageRec: The preimage record to set.

setDefault N/A

Setting Up Entity Registry Chapter _

98 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

setEntityID Parameters:

string p_entityID: The ID of the Entity.

setKeyList N/A

setProperty Parameters:

string propname

any value

setPropertyByMetaRec Parameters:

Record propMetaRec

any value

setStageMode Parameters:

boolean p_stageInd: Set to stage (true) or production (false).

setUpdateRule Parameters:

string p_UpdateRule: The specific update rule.

setUpdateRuleByTransName Parameters:

string p_transName: The transaction name.

setUserContext Parameters:

string p_userContext: The user context to set. An empty string
sets the context to %UserId.

testForAudit N/A

toXmlNode Parameters:

XmlNode parentNode: The parent node of this node.

toXmlNodeChildren Parameters:

XmlNode parentNode: The node of the current entity that all
children see as the parent.

updateChildFields Parameters:

string propname: The name of the property to update.

array of ChildEntity cea: The array of child entities (and their
children down the tree) to set the property on.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 99

updateFromRecord Parameters:

Record rec: The record object to copy data from.

updateKeyFields N/A

validate Parameters:

MessageLogBase p_messageLog(out): The container for all
the messages that are generated by this method.

validateChildren Parameters:

MessageLogBase p_messageLog(out): The message log.

validateFirst Parameters:

MessageLogBase p_messageLog(out): The container for all
the messages that are generated by this method.

workflow Parameters:

boolean p_onlineMode

class SCC_COMMON:Audit

Bundle 48. New application class containing methods to save audit data.

Implementing Classes:

• SCC_COMMON:ENTITY:AbstractEntity

• SCC_COMMON:ENTITY:BasicEntity

• SCC_COMMON:ENTITY:StagedEntity

• SCC_COMMON:ENTITY:ATTRIBUTES:BaseStagedAttribute

class SCC_COMMON_UTIL:BitArray

Bundle 48. New application class for parsing bit data, the way auditing setup is stored in the tools
metadata record.

class SCC_COMMON:ENTITY:BasicEntity
SCC_COMMON:ENTITY:AbstractEntity – – SCC_COMMON:ENTITY:BasicEntity

Direct Known Subclasses: SCC_COMMON:ENTITY:GENERICS:GenericBasicEntity,
SCC_COMMON:ENTITY:API:EntityUnitTest, SCC_COMMON:ENTITY:API:EntityRegistry,
SCC_COMMON:ENTITY:API:EntityType, SCC_COMMON:ENTITY:API:EntityChild,

Setting Up Entity Registry Chapter _

100 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

SCC_COMMON:ENTITY:API:EntityProperty, SCC_COMMON:SHOPCART:ShoppingCartItem,
SCC_COMMON:ENTITY:API:EntityTypeChild

Summary
Property Summary:

public boolean STAGE_MODE

Properties Inherited from SCC_
COMMON:ENTITY:AbstractEntity

baseProps, ChildEntityArray, data, dataPreimage, DO_SAVE,
 dynamicProperties, entityDelete, entityID, EntityMetaData,
 entityName, hasAuditRowAddDttm, hasAuditRowAddOprid,
hasAuditRowUpdDttm, hasAuditRowUpdOprid, ignoreFields,
 keyCollection, parent, parentCE, prodRecordName,
 PropertyMetaData, RECORD_NAME, SCC_ENTITY_INST
_ID, SCC_ROW_ADD_DTTM, SCC_ROW_ADD_OPRID,
 SCC_ROW_UPD_DTTM, SCC_ROW_UPD_OPRID,
 selfServiceMode, UPDATE_RULE, USER_CONTEXT,
 workflowPreimage, XSDCustomNS, XSDFieldList, XSDNS

Constructor Summary:

public void BasicEntity(IEntity p_parent): Base Constructor

Method Summary:

public void demote(number p_tempID): This method does nothing since
this entity is not staged, but it has to be implemented.

public void promote(string p_emplID, MessageLogBase p_log out): This
method does nothing since this entity is not staged, but it has
to be implemented.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 101

Methods Inherited from SCC_
COMMON:ENTITY:AbstractEntity

applyDataKey, buildCSVString,
 buildPropertyMetaDataCache, buildXSD,
 buildXSDChildren, changeRecord, clearDataPreImage,
 clearDataPreImageChildren, commonValidate,
 defaultChildren, delete, deleteChildren, demoteChildren,
 destroy, entityFieldUpdateNeeded, entityTypeUpdateNeeded,
 entityTypeUpdateRequested, entityUpdateRequested,
 fill, fillChildren, fillFromKeys, fillLOVDescrs,
 fromXmlNode, fromXmlNodeChildren, generateRowset,
 generateXSD, getChildEntity, getCSUserDefaults,
 getDataKey, getEntPropsByPropertyName,
 getFullEntityPathName, getIgnoreFields, getInstallationHCM,
 getLOVDescr, getLOVValue, getMaxSeqNbrSQL,
 getParent, getProperty, getPropertyByMetaRec,
 getRecordName, getTagByFieldName, hardDelete,
 hardDeleteChildren, hasEffdt, hasEffseq, hasKey,
 isEqualKeys, isEqualKeysRecord, populateAudit, prePublish,
 preSave, preSaveChildren, preSaveFirst, promoteChildren,
 publish, retrieveDataRule, save, saveChildren, setChildren,
setData, setDataPreImage, setDefault, setEntityID, setKeyList,
 setProperty, setPropertyByMetaRec, setStageMode,
 setUpdateRule, setUpdateRuleByTransName, setUserContext,
 testForAudit, toXmlNode, toXmlNodeChildren,
 updateChildFields, updateFromRecord, updateKeyFields,
 validate, validateChildren, validateFirst, workflow

Details
Property Details:

STAGE_MODE public boolean

Constructor Details:

Basic Entity Parameters:

IEntity p_parent: the parent of this entity, or null if this is the
top of the entity tree.

Method Details:

demote Parameters:

number p_tempID

Setting Up Entity Registry Chapter _

102 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

promote Parameters:

string p_emplID

MessageLogBase p_log(out)

class SCC_COMMON:ENTITY:StagedEntity
SCC_COMMON:ENTITY:AbstractEntity – – SCC_COMMON:ENTITY:StagedEntity

Direct Known Subclasses: SCC_COMMON:ENTITY:GENERICS:GenericStagedEntity

Summary
Property Summary:

public boolean DO_SAVE_CHILDREN: Specifies if the children should be
saved.

public string EMPLID: Builds the xml schema section pertaining to this
entity. The implementation builds and populates the schema
based on the underlying record, ignoring any fields in the
ignore array. Keys that roll down from the parent are not
marked required on the child.

RECOMMENDATION: Only override if the entity requires a
custom schema. @param xmlnode: The Tools XmlNode object
of the parent that should be continued by this entity.

public string entityID: The entity ID based on the entity registry.

public string entityName: The entity Name as specified in the registry.

public string PROD_RECORD_NAME: The Production Record name from
the registry.

public number SCC_TEMP_ID: The property for the tempid field on stage
records.

public string STAGE_RECORD_NAME: The Stage Record name from the
registry.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 103

Properties Inherited from SCC_
COMMON:ENTITY:AbstractEntity

baseProps, ChildEntityArray, data, dataPreimage, DO_
SAVE, dynamicProperties, entityDelete, EntityMetaData,
 hasAuditRowAddDttm, hasAuditRowAddOprid,
hasAuditRowUpdDttm, hasAuditRowUpdOprid, ignoreFields,
 keyCollection, parent, parentCE, prodRecordName,
 PropertyMetaData, RECORD_NAME, SCC_ENTITY_
INST_ID, SCC_ROW_ADD_DTTM, SCC_ROW_ADD
_OPRID, SCC_ROW_UPD_DTTM, SCC_ROW_UPD_
OPRID, selfServiceMode, STAGE_MODE, UPDATE_RULE,
 USER_CONTEXT, workflowPreimage, XSDCustomNS,
 XSDFieldList, XSDNS

Constructor Summary:

public void StagedEntity(IEntity p_parent): The Constructor

Method Summary:

public void comparePreviousEffdt(): Compares the current record
underlying this entity with previous effective dated rows. If no
data has changed between this entity and the current effective
dated row it prevents a save from occurring. This only matters
when we are dealing with effective dated entities.

RECOMMENDATION: Do not override.

public void demote(number p_tempID): Moves data from production
records to staging record.

RECOMMENDATION: Do not override.

public string getID(): Retrieves the temp ID.

protected string getProdRecordName(): Retrieves the production record name.

protected string getStageRecordName(): Retrieves the stage record name.

public void promote(string p_emplID, MessageLogBase p_log out):
Moves Data from Staging to Production Records (does not
validate or save).

RECOMMENDATION: Do not override.

public void save(MessageLogBase p_messageLog out): Calls presave and
issues save for all children then a save for this entity.

RECOMMENDATION: Do not override.

Setting Up Entity Registry Chapter _

104 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

protected void setEntityID(string p_entityID): Sets the entity ID, and retrieves
the related information from the registry.

RECOMMENDATION: Do not override.

public void setID(string p_ID): Sets the temp id for this entity.

RECOMMENDATION: Do not override.

public void setStageMode(boolean p_stageInd): Sets the stage mode and
changes the underlying record to stage/production for this
entity and all children.

RECOMMENDATION: Do not override.

Methods Inherited from SCC_
COMMON:ENTITY:AbstractEntity

applyDataKey, buildCSVString,
 buildPropertyMetaDataCache, buildXSD,
 buildXSDChildren, changeRecord, clearDataPreImage,
 clearDataPreImageChildren, commonValidate,
 defaultChildren, delete, deleteChildren, demoteChildren,
 destroy, entityFieldUpdateNeeded, entityTypeUpdateNeeded,
 entityTypeUpdateRequested, entityUpdateRequested,
 fill, fillChildren, fillFromKeys, fillLOVDescrs,
 fromXmlNode, fromXmlNodeChildren, generateRowset,
 generateXSD, getChildEntity, getCSUserDefaults,
 getDataKey, getEntPropsByPropertyName,
 getFullEntityPathName, getIgnoreFields, getInstallationHCM,
 getLOVDescr, getLOVValue, getMaxSeqNbrSQL,
 getParent, getProperty, getPropertyByMetaRec,
 getRecordName, getTagByFieldName, hardDelete,
 hardDeleteChildren, hasEffdt, hasEffseq, hasKey,
 isEqualKeys, isEqualKeysRecord, populateAudit, prePublish,
 preSave, preSaveChildren, preSaveFirst, promoteChildren,
 publish, retrieveDataRule, saveChildren, setChildren,
 setData, setDataPreImage, setDefault, setKeyList,
 setProperty, setPropertyByMetaRec, setUpdateRule,
 setUpdateRuleByTransName, setUserContext, testForAudit,
 toXmlNode, toXmlNodeChildren, updateChildFields,
 updateFromRecord, updateKeyFields, validate,
 validateChildren, validateFirst, workflow

Details
Property Details:

DO_SAVE_CHILDREN public boolean

EMPLID public string

entityID public string

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 105

entityName public string

PROD_RECORD_NAME public string

SCC_TEMP_ID public number

STAGE_RECORD_NAME public string

Constructor Details:

StagedEntity Parameters:

IEntity p_parent: the parent of this entity, or null if this is the
top of the entity tree.

Method Details:

comparePreviousEffdt

demote Parameters:

number p_tempID: The tempid to replace the emplid with.

getID Return:

string - the tempID

getProdRecordName Return:

string

getStageRecordName Return:

string

promote Parameters:

string p_emplID

MessageLogBase p_log(out): The MessageLog object to log
all errors/warnings to.

save Parameters:

MessageLogBase p_messageLog(out): The message log.

setEntityID Parameters:

string p_entityID: The ID of the Entity.

Setting Up Entity Registry Chapter _

106 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

setID Parameters:

string p_ID: The temporary ID value to set.

setStageMode Parameters:

boolean p_stageInd: Set to stage (true) or production (false).

abstract class SCC_COMMON:ENTITY:StagedHREntity
SCC_COMMON:ENTITY:AbstractEntity – – SCC_COMMON:ENTITY:StagedHREntity

Summary
Property Summary:

public string EMPLID: Builds the xml schema section pertaining to this
entity. The implementation builds and populates the schema
based on the underlying record, ignoring any fields in the
ignore array. Keys that roll down from the parent are not
marked required on the child.

RECOMMENDATION: Only override if the entity requires a
custom schema. @param xmlnode: The Tools XmlNode object
of the parent that should be continued by this entity.

public string entityID: The entity ID based on the entity registry.

public string entityName: The entity Name as specified in the registry.

public string PROD_RECORD_NAME: The Production Record name from
the registry.

public number SCC_TEMP_ID: The property for the tempid field on stage
records.

public string STAGE_RECORD_NAME: The Stage Record name from the
registry.

Properties Inherited from SCC_
COMMON:ENTITY:AbstractEntity

baseProps, ChildEntityArray, data, dataPreimage, DO_
SAVE, dynamicProperties, entityDelete, EntityMetaData,
 hasAuditRowAddDttm, hasAuditRowAddOprid,
hasAuditRowUpdDttm, hasAuditRowUpdOprid, ignoreFields,
 keyCollection, parent, parentCE, prodRecordName,
 PropertyMetaData, RECORD_NAME, SCC_ENTITY_
INST_ID, SCC_ROW_ADD_DTTM, SCC_ROW_ADD
_OPRID, SCC_ROW_UPD_DTTM, SCC_ROW_UPD_
OPRID, selfServiceMode, STAGE_MODE, UPDATE_RULE,
 USER_CONTEXT, workflowPreimage, XSDCustomNS,
 XSDFieldList, XSDNS

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 107

Constructor Summary:

public void StagedHREntity(IEntity p_parent): The Constructor

Method Summary:

public void demote(number p_tempID): Moves data from production
records to staging record.

RECOMMENDATION: Do not override.

public baseType getHRType(string p_EMPLID): Builds the HCR_PERSON_
TYPES object based on the data in the current entity using the
emplid provided.

public string getID(): Retrieves the temp ID.

protected ServiceManager getServiceManager(): Returns the HCM ServiceManager
object.

public void hardDelete(MessageLogBase p_messageLog out): Deletes the
entity object and all its child entities from the database, based
on the entityDelete flag.

RECOMMENDATION: Do not override this method

public void promote(string p_emplID, MessageLogBase p_log out):
Moves Data from Staging to Production Records (does not
validate or save).

RECOMMENDATION: Do not override.

public void save(MessageLogBase p_messageLog out): Calls presave and
issues save for all children then a save for this entity. On save
for production it invokes updateDeleteHcm to call the HCM
Web Service.

RECOMMENDATION: Do not override.

protected void setEntityID(string p_entityID): Sets the entity ID, and retrieves
the related information from the registry.

RECOMMENDATION: Do not override.

public void setID(string p_ID): Sets the temp id for this entity.

RECOMMENDATION: Do not override.

Setting Up Entity Registry Chapter _

108 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public void setStageMode(boolean p_stageInd): Sets the stage mode and
changes the underlying record to stage/production for this
entity and all children.

RECOMMENDATION: Do not override.

protected void updateDeleteHCM(boolean p_deleteFlag): This method is
called from save, it should perform the update for production
data by calling the HCM service.

Methods Inherited from SCC_
COMMON:ENTITY:AbstractEntity

applyDataKey, buildCSVString,
 buildPropertyMetaDataCache, buildXSD,
 buildXSDChildren, changeRecord, clearDataPreImage,
 clearDataPreImageChildren, commonValidate,
 defaultChildren, delete, deleteChildren, demoteChildren,
 destroy, entityFieldUpdateNeeded, entityTypeUpdateNeeded,
 entityTypeUpdateRequested, entityUpdateRequested, fill,
 fillChildren, fillFromKeys, fillLOVDescrs, fromXmlNode,
 fromXmlNodeChildren, generateRowset, generateXSD,
 getChildEntity, getCSUserDefaults, getDataKey,
 getEntPropsByPropertyName, getFullEntityPathName,
 getIgnoreFields, getInstallationHCM, getLOVDescr,
 getLOVValue, getMaxSeqNbrSQL, getParent,
 getProperty, getPropertyByMetaRec, getRecordName,
 getTagByFieldName, hardDeleteChildren, hasEffdt,
 hasEffseq, hasKey, isEqualKeys, isEqualKeysRecord,
 populateAudit, prePublish, preSave, preSaveChildren,
 preSaveFirst, promoteChildren, publish, retrieveDataRule,
 saveChildren, setChildren, setData, setDataPreImage,
 setDefault, setKeyList, setProperty, setPropertyByMetaRec,
 setUpdateRule, setUpdateRuleByTransName, setUserContext,
 testForAudit, toXmlNode, toXmlNodeChildren,
 updateChildFields, updateFromRecord, updateKeyFields,
 validate, validateChildren, validateFirst, workflow

Details
Property Details:

EMPLID public string

entityID public string

entityName public string

PROD_RECORD_NAME public string

SCC_TEMP_ID public number

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 109

STAGE_RECORD_NAME public string

Constructor Details:

StagedHREntity Parameters:

IEntity p_parent: The parent of this entity, or null if this is the
top of the entity tree.

Method Details:

demote Parameters:

number p_tempID: The tempid to replace the emplid with.

getHRType Parameters:

string p_EMPLID: The emplid to use for the PERSON_TYPE.

Return:

baseType

getID Return:

string - the tempID

getServiceManager Return:

ServiceManager

hardDelete Parameters:

MessageLogBase p_messageLog(out)the message log

promote Parameters:

string p_emplID

MessageLogBase p_log(out): The MessageLog object to log
all errors/warnings to.

save Parameters:

MessageLogBase p_messageLog(out): The message log.

setEntityID Parameters:

string p_entityID: The ID of the Entity.

Setting Up Entity Registry Chapter _

110 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

setID Parameters:

string p_ID: The temporary ID value to set.

setStageMode Parameters:

boolean p_stageInd: Set to stage (true) or production (false).

updateDeleteHCM Parameters:

boolean p_deleteFlag: Specifies if the entity should be deleted.

class SCC_COMMON:ENTITY:WorkEntity
SCC_COMMON:ENTITY:AbstractEntity – – SCC_COMMON:ENTITY:WorkEntity

Direct Known Subclasses: SCC_COMMON:SHOPCART:ShoppingCart,
SCC_COMMON:ENTITY:GENERICS:GenericWorkEntity

Summary
Property Summary:

public boolean STAGE_MODE

Properties Inherited from SCC_
COMMON:ENTITY:AbstractEntity

baseProps, ChildEntityArray, data, dataPreimage, DO_SAVE,
 dynamicProperties, entityDelete, entityID, EntityMetaData,
 entityName, hasAuditRowAddDttm, hasAuditRowAddOprid,
hasAuditRowUpdDttm, hasAuditRowUpdOprid, ignoreFields,
 keyCollection, parent, parentCE, prodRecordName,
 PropertyMetaData, RECORD_NAME, SCC_ENTITY_INST
_ID, SCC_ROW_ADD_DTTM, SCC_ROW_ADD_OPRID,
 SCC_ROW_UPD_DTTM, SCC_ROW_UPD_OPRID,
 selfServiceMode, UPDATE_RULE, USER_CONTEXT,
 workflowPreimage, XSDCustomNS, XSDFieldList, XSDNS

Constructor Summary:

public void WorkEntity(IEntity p_parent): Base Constructor

Method Summary:

public void demote(number p_tempID): This method does nothing since
this entity is not staged, but it has to be implemented.

public rowset generateRowset()

public void hardDelete(MessageLogBase p_messageLog out)

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 111

public void promote(string p_emplID, MessageLogBase p_log out): This
method does nothing since this entity is not staged, but it has
to be implemented.

public void save(MessageLogBase p_messageLog out)

Methods Inherited from SCC_
COMMON:ENTITY:AbstractEntity

applyDataKey, buildCSVString,
 buildPropertyMetaDataCache, buildXSD,
 buildXSDChildren, changeRecord, clearDataPreImage,
 clearDataPreImageChildren, commonValidate,
 defaultChildren, delete, deleteChildren, demoteChildren,
 destroy, entityFieldUpdateNeeded, entityTypeUpdateNeeded,
 entityTypeUpdateRequested, entityUpdateRequested,
 fill, fillChildren, fillFromKeys, fillLOVDescrs,
 fromXmlNode, fromXmlNodeChildren, generateXSD,
 getChildEntity, getCSUserDefaults, getDataKey,
 getEntPropsByPropertyName, getFullEntityPathName,
 getIgnoreFields, getInstallationHCM, getLOVDescr,
 getLOVValue, getMaxSeqNbrSQL, getParent,
 getProperty, getPropertyByMetaRec, getRecordName,
 getTagByFieldName, hardDeleteChildren, hasEffdt,
 hasEffseq, hasKey, isEqualKeys, isEqualKeysRecord,
 populateAudit, prePublish, preSave, preSaveChildren,
 preSaveFirst, promoteChildren, publish, retrieveDataRule,
 saveChildren, setChildren, setData, setDataPreImage,
 setDefault, setEntityID, setKeyList, setProperty,
 setPropertyByMetaRec, setStageMode, setUpdateRule,
 setUpdateRuleByTransName, setUserContext, testForAudit,
 toXmlNode, toXmlNodeChildren, updateChildFields,
 updateFromRecord, updateKeyFields, validate,
 validateChildren, validateFirst, workflow

Details
Property Details:

STAGE_MODE public boolean

Constructor Details:

WorkEntity Parameters:

IEntity p_parent: The parent of this entity, or null if this is the
top of the entity tree.

Method Details:

Setting Up Entity Registry Chapter _

112 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

demote Parameters:

number p_tempID

generateRowset Return:

Rowset

hardDelete Parameters:

MessageLogBase p_messageLog(out)

promote Parameters:

string p_emplID

MessageLogBase p_log(out)

save Parameters:

MessageLogBase p_messageLog(out)

class SCC_COMMON:ENTITY:ChildEntity
Summary and Details:

Summary
Property Summary:

public Array of IEntity childEntities: An array of all child entities of a specific type.

public string className: The name of the appclass the entities under this
childEntity implement.

public string elementName: The element name to use for each entity.

public boolean Embed: Specifies if the Entities this child contains have been
marked for embedding in the parent entity.

public string Encapsulate: The name of the tag to use to encapsulate all
entities in this childEntity object.

public string EntityID: The Entity ID for the entities under this childEntity.

public string EntityName: The Entity Name for the entities under this
childEntity.

public string MaxCount: The maximum number of entities of this type
allowed based on the registry.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 113

public number MaxSeqNbr: The current maximum sequence number, if this
entity has a key that is a sequence number.

public string MinCount: The minimum number of entities of this type
allowed based on the registry.

public IEntity parent: The parent of this ChildEntity.

public string PROD_RECORD: The name of the production record the
entities under this childEntity implement.

public boolean STAGE_MODE: The current stage state of the entities,
 true=staged, false=production.

public string STAGE_RECORD: The name of the stage record the entities
under this childEntity implement.

Constructor Summary:

public void ChildEntity()

Method Summary:

public void buildXSD(XmlNode xmlnode): The method to build the
schema for this entity, works in conjunction with the method
of the same name on the entity.

public void checkForDupes(MessageLogBase p_messageLog out): Checks
for entities with duplicate keys in the childEntities array.

public void clearDataPreImage(): Invokes clearDataPreImage on all
entities in childEntities.

public void clearEntities(): Resets the childEntities array to empty.

public void copyFromRowset(Rowset rs): Copies the record data from
a rowset into childEntities. If the keys match it, an existing
entity is updated. Otherwise, an entity is added. Data is copied
field by field into the equivalent properties. This means any
logic in get-set is executed. In the case of update-only fields
where values have changed, they are updated. Properties are
copied based on matching the underlying field names.

public Rowset copyToRowset(): Copies all the records in childEntities to a
rowset.

public IEntity createEntity(): Create an instance of the entity based on the
className.

Setting Up Entity Registry Chapter _

114 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public void default(): Invokes setDefault on all entities in childEntities.

public void delete(boolean p_entityDelete): Invokes delete on all entities
in childEntities.

public void demote(number p_tempID): Invokes demote on all entities in
childEntities.

public void destroy(): Perform cleanup activity on this entity.

public void fill(boolean p_clearstate): Invokes fill on all entities in
childEntities.

public IEntity findKeyMatchingEntity(Record rec): Finds the entity with
keys that match the given record.

public void fromXMLNode(XmlNode parentnode): Invokes
fromXMLNode on all entities in childEntities.

public array of IEntity getEntitiesByProperties(array of PStruct pstructs): Returns all
entities in the childEntities array where the properties provided
match.

public array of IEntity getEntitiesByProperty(PStruct pstruct): Returns all entities in
the childEntities array where the property provided matches.

public IEntity getEntityByProperties(array of PStruct pstructs): Returns a
specific entity in the childEntities array where all properties
provided match.

public IEntity getEntityByPropertiesEffdt(array of PStruct pstructs, date
asOfDate): Returns a specific entity in the childEntities array
where all properties provided match and the entity is the
current entity as of a specific effective date.

public IEntity getEntityByProperty(PStruct pstruct): Returns a specific
entity in the childEntities array where a property matches that
requested.

public number getNextSeqNbr(string fieldname, array of IEntity entities):
Provides the next sequence number for a specified fieldname
out of a specific array of entities. Setting the array allows the
entities to be a subset of childEntities.

public Rowset getRowset(): Builds an empty rowset of stage or production
based on the STAGE_MODE.

public void hardDelete(MessageLogBase p_messageLog out): Invokes
hardDelete on all entities in childEntities.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 115

public void preSave(): Invokes presaveFirst on the first entity in
childEntities and presave on all entities in childEntities.

public void promote(string p_emplID, MessageLogBase p_messageLog
out): Invokes promote on all entities in childEntities.

public void save(MessageLogBase p_messageLog out): Invokes save on
all entities in childEntities.

public void toXMLNode(XmlNode parentnode): Invokes toXMLNode on
all entities in childEntities.

public void validate(MessageLogBase p_messageLog out): Invokes
validate on all entities in childEntities.

public void workflow(boolean p_onlineMode): Invokes all the workflow
methods in childEntities.

Details
Property Details:

childEntities public Array of IEntity

className public string

elementName public string

Embed public boolean

Encapsulate public string

EntityID public string

EntityName public string

MaxCount public string

MaxSeqNbr public number

MinCount public string

parent public IEntity

PROD_RECORD public string

STAGE_MODE public boolean

STAGE_RECORD public string

Setting Up Entity Registry Chapter _

116 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Constructor Details:

ChildEntity N/A

Method Details:

buildXSD Parameters:

XmlNode xmlnode: The XmlNode object from the parent to
add the schema elements to.

checkForDupes Parameters:

MessageLogBase p_messageLog(out)

clearDataPreImage N/A

clearEntities N/A

copyFromRowset Parameters:

Rowset rs: The rowset to copy data from.

copyToRowset Return:

Rowset

createEntity Return:

IEntity

default N/A

delete Parameters:

boolean p_entityDelete: The delete state passed from the
parent to the child.

demote Parameters:

number p_tempID: The tempID to set on the records when the
data is demoted.

destroy N/A

fill Parameters:

boolean p_clearstate: Specifies if the preImage should be set.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 117

findKeyMatchingEntity Parameters:

Record rec: The record to use when searching for a match.

Return:

IEntity

fromXMLNode Parameters:

XmlNode parentnode: The xml node that entities in this
childEntity should be parsed from.

getEntitiesByProperties Parameters:

array of PStruct pstructs

Return:

array of IEntity

getEntitiesByProperty Parameters:

PStruct pstruct: An object that provides the property name and
value to search for.

Return:

array of IEntity

getEntityByProperties Parameters:

array of PStruct pstructs

Return:

IEntity

getEntityByPropertiesEffdt Parameters:

array of PStruct pstructs

date asOfDate: The date to check against the effective date.

Return:

IEntity

Setting Up Entity Registry Chapter _

118 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

getEntityByProperty Parameters:

PStruct pstruct: An object that provides the property name and
value to search for.

Return:

IEntity

getNextSeqNbr Parameters:

string fieldname: The field name of the sequence number.

array of IEntity entities: The array of entities to search through
to figure out the max sequence number.

Return:

number - the next available sequence number.

getRowset Return:

Rowset - the rowset generated.

hardDelete Parameters:

MessageLogBase p_messageLog(out): The messageLog
object passed from the parent to the child to log any errors or
warnings.

preSave N/A

promote Parameters:

string p_emplID: The employee ID to set on the records when
the data is promoted.

MessageLogBase p_messageLog(out): The messageLog
object passed from the parent to the child to log any errors or
warnings.

save Parameters:

MessageLogBase p_messageLog(out): The messageLog
object passed from the parent to the child to log any errors or
warnings.

toXMLNode Parameters:

XmlNode parentnode: The xml node that entities in this
childEntity should be added to.

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 119

validate Parameters:

MessageLogBase p_messageLog(out): The messageLog
object passed from the parent to the child to log any errors or
warnings.

workflow Parameters:

boolean p_onlineMode: The online mode.

class SCC_COMMON:ENTITY:EntityRegFactory
Summary and Details:

Summary
Method Summary:

public IEntity createEntity(string entityID, IEntity parent)

Details
Method Details:

createEntity Parameters:

string entityID

IEntity parent

Return

IEntity

interface SCC_COMMON:ENTITY:CODEGEN:EntityGeneratorInterface
Implementing Classes: SCC_COMMON:ENTITY:CODEGEN:EntityGeneratorBase

Summary
Property Summary:

public string BaseAppClass: The base appclass, this is populated based on
the entity type when the code generate button is pressed.

public string ClassName: The class name, which is populated by the entity
registry when the code generate button is pressed.

Setting Up Entity Registry Chapter _

120 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public string EntityID: The entity id, which is populated by the entity
registry when the code generate button is pressed.

public boolean hasProduction: Specifies if this entity has a production record.

public boolean hasStage: Specifies if this entity has a stage record.

public Array of string ignoreFields: Specifies the names of properties implemented
on the parent entities that should not be generate on the current
entity.

public Rowset rsProperties: Passes in the rowset of SCC_ENT_PROPS
related to the entity.

Method Summary:

public void BuildUI(Rowset rs): Builds the UI of check boxes in the given
rowset, SCC_ER_CGEN_VW, this rowset has 2 fields, SCC_
ER_CGEN_ARG, the check box to be populated by the user
and SCC_ER_CGEN_LBL the label displayed relative to the
check box. Using that this code can generate as many yes/no
questions as needed for code generation.

public string GenerateCode(): The process called to generate the code based
on the provided properties and UI input.

public void ParseUI(Rowset rs): Retrieves the data from the UI built in
BuildUI, SCC_ER_CGEN_VW, this rowset has 2 fields, SCC
_ER_CGEN_ARG, the check box to be populated by the user
and SCC_ER_CGEN_LBL the label displayed relative to the
check box. This code should retrieve the arguments.

Details
Property Details:

BaseAppClass public string

ClassName public string

EntityID public string

hasProduction public boolean

hasStage public boolean

ignoreFields public Array of string

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 121

rsProperties public Rowset

Method Details:

BuildUI Parameters:

Rowset rs: The rowset for SCC_ER_CGEN_VW to be
populated.

GenerateCode Return:

string - returns the generated code as a string for display.

ParseUI Parameters:

Rowset rs: The rowset for SCC_ER_CGEN_VW to be parsed.

interface SCC_COMMON:ENTITY:PROPERTY:PropertySyncInterface
Implementing Classes: SCC_COMMON:ENTITY:PROPERTY:PropertySyncBase

Summary
Property Summary:

public string appclass: The application class for the specified entity,
 populated pre-sync.

public string entityID: The entity ID for the specified entity, populated pre-
sync.

public string EntityType: The entity type ID for the specified entity,
 populated pre-sync.

public MessageLogBase Log: All property changes should be written to the log, which
is then displayed to the user when the sync is done using All
Property Sync.

public string ProdRecord: The production record as specified on the entity,
 populated pre-sync.

public rowset rs: The rowset of current entity properties based on record
SCC_ENT_PROPS, populated pre-sync.

public string StageRecord: The staging record as specified on the entity,
 populated pre-sync.

Method Summary:

Setting Up Entity Registry Chapter _

122 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public string LogAsString(): Returns the Log as a string.

public void save(): The method called to save the updated properties, this
is called from the all property sync process, for the entity
registry component this is not used.

public void updateProperties(): The method called to update the properties
in the rowset, based on the records.

Details
Property Details:

appclass public string

entityID public string

EntityType public string

Log public MessageLogBase

ProdRecord public string

rs public Rowset

StageRecord public string

Method Details:

LogAsString Return:

string

save N/A

updateProperties N/A

abstract class SCC_COMMON:ENTITY:LOG:MessageLogBase
Direct Known Subclasses: SCC_COMMON:ENTITY:LOG:TempMessageLog

Summary
Property Summary:

public boolean isError

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 123

public boolean isInformation

public boolean isReconcileError

public boolean isWarning

public string messageContext

protected Array of MessageEntry MessageEntries

Constructor Summary:

public void MessageLogBase()

Method Summary:

public void append(MessageLogBase p_messageLog)

public void buildMsgSegment(XmlNode msgsnode)

public void clear()

public Message generateFaultMsg(string p_operationName)

public void generateValidationMsg(XmlNode p_node)

public MessageEntry getMessageEntry(number p_index): Returns the MessageEntry
Object at the given index.

public number length(): length Current length of the message log.

public string read(number p_index):

read - Read an entry from the Message Log.

@Return String - The message entry at the given index or
blank if index does not exist.

public void save()

public void writeEntry(MessageEntry p_entry)

Details
Property Details:

isError public boolean

Setting Up Entity Registry Chapter _

124 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

isInformation public boolean

isReconcileError public boolean

isWarning public boolean

messageContext public string

MessageEntries protected Array of MessageEntry

Constructor Details:

MessageLogBase N/A

Method Details:

append Parameters:

MessageLogBase p_messageLog

buildMsgSegment Parameters:

XmlNode msgsnode

clear N/A

generateFaultMsg Parameters:

string p_operationName

Return:

Message

generateValidationMsg Parameters:

XmlNode p_node

getMessageEntry Parameters:

number p_index

Return:

MessageEntry

length Return:

number

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 125

read Parameters:

number p_index

Return:

string - The message entry at the given index or blank if index
does not exist.

save N/A

writeEntry Parameters:

MessageEntry p_entry

class SCC_COMMON:ENTITY:LOG:MessageEntry
Summary and Details:

Summary
Property Summary:

public string Context

public number MsgID

public number MsgSet

public Array of string ParmArray

public Array of MEProp Properties

public number Severity

public number Severity_Error

public number Severity_Info

public number Severity_ReconcileError

public number Severity_Warning

Constructor Summary:

public void MessageEntry()

Method Summary:

Setting Up Entity Registry Chapter _

126 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

public void AddProperty(string p_UID, string p_Prop)

public void DataPopulateV1(number p_MsgSet, number p_MsgID,
 number p_Severity, array of string p_ParmArray, string p_
Context, string p_UID, string p_Prop)

Quick population of a messageEntry.

Details
Property Details:

Context public string

MsgID public number

MsgSet public number

ParmArray public Array of string

Properties public Array of MEProp

Severity public number

Severity_Error public number

Severity_Info public number

Severity_ReconcileError public number

Severity_Warning public number

Constructor Details:

MessageEntry N/A

Method Details:

AddProperty Parameters:

string p_UID

string p_Prop

Chapter _ Setting Up Entity Registry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 127

DataPopulateV1 Parameters:

number p_MsgSet: The message set of the error.

number p_MsgID: The Message Id, based on the message set
for the error.

number p_Severity: The severity of the error should be set
using Severity_ReconcileError, Severity_Error, Severity_
Warning, Severity_Info.

array of string p_ParmArray: The array of parameters for the
message specified, if no parameters are needed null can be
passed.

string p_Context: Specify the context of the MessageEntry. If
no context is set, the MessageLog defaults it to writeEntry.

string p_UID: The EntityInstanceId that this messageEntry
should be attached to, if multiple EntityInstances are involved
use AddProperty to add the additional properties.

string p_Prop: A specific property (use the xml tag) under
an instanceid that the messageEntry is related to, if multiple
properties are involved use AddProperty after DataEntry to
add additional properties.

class SCC_COMMON:ENTITY:LOG:MEProp
Summary and Details:

Summary
Property Summary:

public string EntityInstanceId

public string Property

Details
Property Details:

EntityInstanceId public string

Property public string

		Setting Up Entity Registry

		Understanding Entity Registry

		Configuring Entity Types

		Pages Used to Configure Entity Types

		Setting Up Entity Types

		Viewing Entities for an Entity Type

		Setting Up Entity Registry

		Pages Used to Set Up Entity Registry

		Configuring the Entity Registry

		Setting Up Entity Properties

		Setting Up Entity Property Details

		Creating Entity Views

		Generating the Entity Schema

		Generating the Entity Code

		Viewing the Entity Hierarchy

		Setting Up Entity Profiles

		Page Used to Set Up Entity Profiles

		Configuring Entity Profiles

		Synchronizing Entity Properties

		Page Used to Synchronize Entity Properties

		Running the Entity Property Sync Process

		Executing Unit Tests for Entities

		Pages Used to Execute Unit Tests for Entities

		Creating an Entity Unit Test

		Running Entity Unit Test Cases

		Creating a New Entity

		Creating or Extending Stage Records

		Creating an Entity Application Class

		Creating an Entity

		Generating XSD Schemas

		Setting Up or Verifying the Campus Solutions SOA Framework

		Setting Up Logging

		Entity Application Class Reference

		interface SCC_COMMON:ENTITY:IEntity

		abstract class SCC_COMMON:ENTITY:AbstractEntity

		class SCC_COMMON:Audit

		class SCC_COMMON_UTIL:BitArray

		class SCC_COMMON:ENTITY:BasicEntity

		class SCC_COMMON:ENTITY:StagedEntity

		abstract class SCC_COMMON:ENTITY:StagedHREntity

		class SCC_COMMON:ENTITY:WorkEntity

		class SCC_COMMON:ENTITY:ChildEntity

		class SCC_COMMON:ENTITY:EntityRegFactory

		interface SCC_COMMON:ENTITY:CODEGEN:EntityGeneratorInterface

		interface SCC_COMMON:ENTITY:PROPERTY:PropertySyncInterface

		abstract class SCC_COMMON:ENTITY:LOG:MessageLogBase

		class SCC_COMMON:ENTITY:LOG:MessageEntry

		class SCC_COMMON:ENTITY:LOG:MEProp

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 1

Working with the Rules Engine

Understanding the Rules Engine

This section discusses:

• Rules Engine components.

• A high level description of the Rules Engine.

• Rules Engine Manager and Entity Registry.

The Rules Engine provides:

• a non-programmer user interface to create complex business rules.

• a secure way to retrieve data from the system in a logical manner, perform calculations and
evaluations, and update data.

• a way to use the Entity Registry, a familiar logical hierarchy, to retrieve data from the system; for
example, the curriculum structure of the Academic Item Registry (AIR) or the results structure of the
Academic Progress Tracker (APT).

• System Variables and Functions for creating Rules.

• a compiler (Rule Builder) that compiles and readies Rules for execution.

• a means to manage changes to Rules over time and a large number of Rules using versioning.

Rules Engine Components
There are three components used to manage the Rules Engine feature:

• Rules Engine Manager

The Rules Engine Manager is the interface for creating institution business rules. The Rules Engine
Manager can be deployed for two Rule building Skill Levels, Expert and Developer, each with its own
set of Rules-building capabilities. The Rules Engine Manager uses the Entity Registry by allowing
users to build Rules using a familiar logical hierarchy; for example, the curriculum structure.

• Rules Engine

The Rules Engine builds (compiles) and executes the user-created business rules.

• Rules Engine Categories.

Working with the Rules Engine Chapter _

2 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rules Engine Categories are used to restrict access to pre-defined and secured areas of application
functionality including access to Rules in other Rules Engine Categories and what types of Rules can
be created: Triggers, Functions or Rules.

High Level Description of the Rules Engine
This diagram shows Rules Function functionality:

Image: Rules Engine Business Process (Generic)

Rules Engine Business Process (Generic)

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 3

Rules Engine Manager and Entity Registry
This section discusses the relationship between the Rules Engine and the Entity Registry.

Entity Registry
When building Rules you need access to the data in your system. For Query Manager and Equation
Engine, data access is based on granting the user access to specific records in the system.

However, data access for the Rules Engine is controlled through the Entity Registry. An Entity is
an object that provides access (view, create, update) to data in a record. The properties on the Entity
represent the fields in the actual records.

By design, an Entity is the primary point of access to the underlying records. This avoids potential
inconsistencies of having the same logic in multiple places and helps in making relevant code reusable
and maintenance easier. This becomes relevant when the same data is accessed or updated in multiple
ways: a user-interface, web services, or the Rules Engine.

Entity relationships are represented in a tree-like hierarchy, making the underlying data structure logical
for functional users to understand. When building a Rule that needs to access specific system data, you
first choose which Base Entity you want to with.

For more information about Entity Registry:

See Setting Up Entity Registry.

Note: Although the Rules Engine can be used with any Entity Registry delivered with the system, it is the
Entity Registries created for data records from the Program Enrollment Academic Item Registry (AIR)
and Academic Progress Tracker (APT) features that are optimized for Rules Engine use.
These Entities are used throughout this document as examples of how Entity-based data can be used in the
Rules Engine.

For more information about AIR and APT, see:

• "Understanding Program Enrollment" (PeopleSoft Campus Solutions 9.2: Student Records)

• "Understanding the Academic Progress Tracker" (PeopleSoft Campus Solutions 9.2: Student Records)

Working with the Rules Engine Chapter _

4 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Here is a example that shows part of the APT Entity Registry Hierarchy:

Image: Academic Progress Tracker Program of Study Entity Registry Hierarchy example

This example illustrates the fields and controls on the Academic Progress Tracker Program of Study
Entity Registry Hierarchy example. You can find definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 5

Here is an example that shows the entities APT Year, APT Study Period, and APT Semester. The
properties of APT Semester are expanded and shown:

Image: Academic Progress Tracker Program, other children of the APT Program of Study example

This example illustrates the fields and controls on the Academic Progress Tracker Program, other children
of the APT Program of Study example. You can find definitions for the fields and controls later on this
page.

In the example above, the APT Year, APT Study Period, and APT Semester entities have been generated
from non-system Academic Item Types Year, Study Period, and Semester. AIR and APT structures are
unique in that they can be specified using institution specific objects. The Entity Registry reflects this.

Working with the Rules Engine Chapter _

6 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The hierarchical relationships between Program of Study, APT year and APT semester are reflected in the
APT hierarchy tree and are very similar to how the Curriculum structure reflects in a student's APT:

Image: Example of the Academic Progress Tracker Tree

This example illustrates the fields and controls on the Example of the Academic Progress Tracker Tree.
You can find definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 7

The results from the student’s APT are reflected in a similar fashion in the Entity Registry Structure:

Image: Academic Progress Tracker Course Entity Registry Hierarchy example

This example illustrates the fields and controls on the Academic Progress Tracker Course Entity Registry
Hierarchy example. You can find definitions for the fields and controls later on this page.

Image: Example of Academic Item Attempt

This example illustrates the fields and controls on the Example of Academic Item Attempt. You can find
definitions for the fields and controls later on this page.

Working with the Rules Engine Chapter _

8 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Entity Properties
Table fields are represented as properties in the Entity Registry. The Rules Engine uses properties to
retrieve or update information.

Image: Example of Entity Properties for Academic Item Attempt

This example illustrates the fields and controls on the Example of Entity Properties for Academic Item
Attempt. You can find definitions for the fields and controls later on this page.

Entity Profiles
Entity Profiles are used to grant or restrict access to specific Entities and/or Entity properties. For
example, you want to allow a specific user to create Rules which retrieve information from APT like the
Grade Result Value for a Course, but do not want to allow the ability for this same Rule to retrieve any
administrative notes that have been added by the supervisor. Through setup of specific Entity Profiles,
you can restrict access to the property that represents the Result Notes.

Security for access to specific Entities via the Rules Engine Manager is enforced by associating specific
Entity Profiles with Rules Engine Entity Categories.

Additional Rules Engine Features
This section discusses Rules Engine major features.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 9

Rules Engine Categories
Rules Engine security is enforced through the set up of Rules Engine Categories. A Rules Engine
Category is user-defined and tied to one or more Roles and/or specific Users. Rules Engine Category
security determines which Entities can be accessed by these Roles and Users and what types of Rules can
be created. There are three types of Rules: Triggers, Functions, and Rules. For example, specific Rules
Engine Categories may allow the creation of Triggers but not of Rules or Functions. Also, Rules Engine
Categories can be set up to use other Rules Engine Categories.

Rule Groups
A Rule Group is a template which can be used to create new Rules that share the same functional purpose.
A Rule Group provides a predefined set of input and output parameters for a Rule or Function and an
option to predefine a Base Entity. Whenever a Rule is created using the predefined Rule Group, all the
Input and Output variables are populated using the Rule Group Template options. By using the same
parameters, all Rules created in the same Rule Group can be used the same way. This is beneficial when,
for example, you need multiple Rules to be called from a user interface, and you need all of those Rules
all to provide similar feedback; like a message that can be displayed on screen. You may also want to
dictate that the Input for all of these Rules needs to be the same, namely confined to the information
available on the user interface. A Rule Group can subsequently be used to dynamically call all Rules
associated with that Rule Group.

Creation of Rule Groups is optional.

Rule Creation
You can use the Rules Engine Manager component to Create, Build, Test, and Version a Rule, and
determine if a Rule is used by other Rules.

• Creating

You can identify and select a functional application area from which to retrieve data by selecting
an Entity and, in the case of a Rule, defining the Criteria which need to be used to select specific
data. Use Statements to act upon the selected entity by creating evaluative statements, performing
calculations, calling other Rules and Functions, and updating and inserting data in the system.

• Building

Once a Rule is created, you must build (compile) it before testing and using it. The Build action
compiles the created Rule and converts it into executable code, which means the Rule is ready to
perform evaluation and calculation tasks.

• Testing

After Rules have been created and built, you can test them with the Rules Engine Tester. The Tester
allows users to define and save one or more Test Profiles with test specific data so that multiple
scenarios can be tested for the same Rule.

• Versioning

The Rules Engine Manager allows the user to create new versions of a Rule and administer one or
more version codes and/or code and comments whenever a new version of a Rule is created.

• Cross Referencing

Working with the Rules Engine Chapter _

10 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The Cross Reference page lists all Functions and Rules which reference the Rule in context.

Calling Rules and Creating Triggers
After Rules have been created, built, tested, and activated, they are ready to use. To use a Rule as part of a
functional business process, it needs to be associated with and called from that process. For example, you
can set up a Trigger and use the code created by the Trigger to call Rules from a user interface; keeping
in mind that the Trigger-generated code may need some adjustment to work for the specific purpose for
which you need it.

Note: The determination of where you want to use Rules and how to make them available must be
discussed with the technical team that supports Campus Solutions at your school.

Rules can be called and executed from the following application functionality:

• Rules Engine Manager Tester

• Rules Engine Batch Processing Component

• Application Component (for example, a user interface)

See Constructing Rules, “Defining Rule Triggers.”

Setting Up the Rules Engine

This section discusses how to:

• Set Up Rules Engine Install Options.

• Define Rule Category Security.

• Define Color Codes for Rules Engine Manager Elements.

• Define Rules Engine Statements.

• Define Rules Version Reason Codes.

• Set up Rules Engine Variables.

• Define Lists of Values for Rules Engine Variables.

Pages Used to Setup the Rules Engine
Page Name Definition Name Navigation Usage

Rules Engine Install Options SCC_INSTALL_RE Set up SACR, System
Administration, Rules Engine,
Setup, Install Options, Rules
Engine Install Options

Set up Rules Engine Install
Options.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 11

Page Name Definition Name Navigation Usage

Rule Category Definition SCC_RULE_CAT_SETUP Set up SACR, System
Administration, Rules Engine,
Setup, Define Categories,
Definition

Add and define Rule
Categories to control the
ability to create Rules by Rule
Usage. Control Rule Category
access to called Rules and
Functions and assign a valid
Entity Profile.

Rule Category Rule Groups SCC_RULE_CAT_RLGRP Set up SACR, System
Administration, Rules Engine,
Setup, Define Categories,
Rule Groups

Determine if Rule Groups are
required for a Rule Category
and assign valid Rule Groups.

Rule Category Security SCC_RULE_CAT_SCRTY Set up SACR, System
Administration, Rules Engine,
Setup, Define Categories,
Security

Assign valid roles and
additional users that have
access to a Rule Category.

Rule Category Cross
Reference

SCC_RULE_CAT_XREF Set up SACR, System
Administration, Rules Engine,
Setup, Define Categories,
Cross Reference

Displays Rules, Rule Groups,
 System Variables, and
Triggers associated with the
Rule Category.

Define Colors SCC_COLORS Set up SACR, System
Administration, Rules Engine,
Setup, Define Colors

Define colors to associate
with Rules Engine user
interface elements.

Define Rules Engine Text
Colors

SCC_RULE_TXT_COLOR Set up SACR, System
Administration, Rules Engine,
Setup, Define Text Color

Associate colors with
Rules Engine user interface
elements.

Define Rules Engine
Statements

SCC_RULE_STMT_TBL Set up SACR, System
Administration, Rules Engine,
Setup, Define Statements

Define Statements to use
in Rule evaluations and
calculations.

Define Version Reason Codes SCC_RULE_VRSN_TBL Set up SACR, System
Administration, Rules Engine,
Setup, Define Version Reason
Codes

Define Rules Version Reason
Codes to use when creating
new versions of existing
Rules.

Define System Variables SCC_RULE_SYSVAR Set up SACR, System
Administration, Rules
Engine, Setup, Define System
Variables, Definition

Define System Variables to
use when creating Rules.

System Variables Cross
Reference

SCC_RULE_SYSV_XREF Set up SACR, System
Administration, Rules
Engine, Setup, Define System
Variables, Cross Reference

Displays Rules and Rule
Groups associated with the
System Variable.

Define Data Sets SCC_RULE_EDS Set up SACR, System
Administration, Rules Engine,
Setup, Define Data Sets

Define Data Sets to use as
a temporary storage when
creating Rules.

Data Set Property Details SCC_EDS_PROP_DTLS Click the Details link on the
Define Data Sets page.

Define Data Set property
details.

Working with the Rules Engine Chapter _

12 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Page Name Definition Name Navigation Usage

Data Set Cross Reference SCC_RULE_EDS_XREF Set up SACR, System
Administration, Rules Engine,
Setup, Define Data Sets,
Cross Reference

Displays Rule and Rule
Groups associated with the
Data Set.

Define List of Values SCC_RULE_LOV_DEFN Set up SACR, System
Administration, Rules Engine,
Setup, Define List of Values

Define lists of values to use
for property prompting when
creating Rules.

List of Values Cross
Reference

SCC_RULE_LOV_XREF Set up SACR, System
Administration, Rules Engine,
Setup, Define List of Values,
Cross Reference

Displays Rule and Rule
Groups associated with the
List of Values.

Setting Up Rules Engine Install Options
Access the Rules Engine Install Options page (Set up SACR, System Administration, Rules Engine,
Setup, Install Options, Rules Engine Install Options).

Image: Rules Engine Install Options page

This example illustrates the fields and controls on the Rules Engine Install Options page. You can find
definitions for the fields and controls later on this page.

Allow Changes to Active Rules Select this check box to allow changes to active Rules or
Functions. You can use this flag to override the feature that
makes Rules features inaccessible when Rules or Functions
are active. This option can be useful in non-production
environments in cases where it should be possible to change
active Rules.

The check box is not selected by default.

When Allow Changes to Active Rules is not selected only
the following can be changed or accessed by the user when
accessing the Rules Engine Manager Component:

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 13

• Rule Long Description (change)

• View of Variables (access)

• View of Evaluations and Calculation Details. (access)

When Allow Changes to Active Rules is not selected, the
following Action Drop down options are not available:

• Create new Version of Rule

• Delete Rule

• Inactivate Rule

• Remove Rule Group from Rule

• Delete Rule Group

• Inactivate Rule Group

When Allow Changes to Active Rules is not selected, Rule
Groups that are selected to be Available In Dynamic Rules
cannot be altered.

Rules Engine LOV Default Values Rules Engine List of Values (LOV) allows you to define Rules
Engine prompting for variables created and used in the Rules
Engine Manager. The system-delivered default values of the
fields in this group box control LOV functionality in the Rules
Engine Manager.

Warning! Do not change the values delivered with the system.

Defining Rule Category Security
Rules Engine Categories provide a means of administering various Rules Engine settings by Role and/or
User. Every Rule that is created must belong to one predefined Rule Category. The Rule Category is used
to control the following:

• The type of Rule that can be created as defined by Rule Usage: Rule, Function, and/or Trigger. Rule
Usage determines how a Rule can be used in a business process.

• Access to Rules in other Rule Categories. Multiple Rule Categories can be added to the Rule Category
definition. When these Rule Categories are added, Rules or Functions belonging to the associated
Rules Category can be called from the main Rule.

• Access to Data through Entities. The Entity Profile attached to the Rule Category defines which
Entities can be used as a Base Entity in the Rule created. The Base Entity is the starting point from
which the logic in the Rule is built. Depending upon the Entity Profile setup, you may have access to
one or more Base Entities and all or a defined set of Entity Properties.

See Setting Up Entity Registry.

Working with the Rules Engine Chapter _

14 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Valid Rule Groups. Valid Rule Groups can be associated with a Rules Category. Restrictions may be
applied so that you can only build Rules from a Rule Group. This can be beneficial in circumstances
where you want to guide a group of users with Rule creation by making sure that they build their
Rule according to the defaults provided by the Rule Group or Rule Groups associated with this Rule
Category.

Note: For Rule Categories delivered with the system, only the Long Description on the Definition page
and Rule Groups and Security pages can be modified. Rules Engine Categories delivered with the system
are marked by the words “System Data” to the right of the Rule Category field.

Access the Rule Category Definition page (Set up SACR, System Administration, Rules Engine, Setup,
Define Categories, Definition).

Image: Rule Category Definition page

This example illustrates the fields and controls on the Rule Category Definition page. You can find
definitions for the fields and controls later on this page.

Using this category as an example, you cannot create Functions or Rules in category Math, but you can
create Functions and Rules in category AIR Functions and CALL Functions in category Math.

Rule Category Displays a unique ID generated by the system. When adding
a new Rule Category, the default value is NOID. After saving
the Rule Category, a unique ID is generated by the system and
assigned to the Rule Category. The ID is created by combining

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 15

prefix “SCC_RULE_CAT_” with the system date and time
stamp in format YYYYMMDDHHMMSS.

Rule Category Name Enter a Rule Category Name. The Rule Category Name is used
when searching for a Rule Category and for display.

Long Description Enter descriptive text explaining the function of the Rule
Category.

Available to All Categories Select this check box to make this Category automatically
available as a valid Category in other Categories. Categories
that are defined as “Available to all Categories” cannot have any
Valid Categories of its own. When this check box is deselected,
 the Category is no longer available in other Categories.

Note: Security settings on the Rule Category affect all Rules,
 Functions and Triggers which have been called from or created
in this Category.

In the example below the Category Math has been made
available to Category “Admissions Rules” as a Valid Rule
Category. Every Function and Rule Created in Category Math
can now be called from a Function or Rule created in Category
“Admissions Rules”.

Note: Deselecting “Available to All Categories” on category
Math would remove the Category from Admissions Rules and
invalidate the security on the Call statement of rules which have
already been created. Although this would not break compiled
Rules it would cause problems when users want to change those
rules.

Entity Profile Name Enter the Entity Profile Name that you want to associate to this
Rule Category. Rules, Functions and Triggers can be built using
the Base Entities which have been setup in this Entity Profile.
 If the Entity Profiles uses Views, access to certain properties
within an Entity may have been restricted.

Allow Rules Select this check box to allow the creation of Rules with this
Rule Category.

Allow Functions Select this check box to allow the creation of Functions with this
Rule Category.

Allow Triggers Select this check box to allow the creation of Triggers with this
Rule Category.

Valid Rule Categories Select Rule Categories available to this Rule Category. The
Rules, Functions, and Triggers of the selected categories can be
called by Rules created in the main Category.

Working with the Rules Engine Chapter _

16 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Note: This is not an inheritance model. Adding a valid Rule
Category here gives you access to the Rules, Functions,
 and Triggers native to that Rule Category but not to Rules,
 Functions, and Triggers of any Rule Categories associated with
the selected Rule Category.

Access the Rule Category Rule Groups page (Set up SACR, System Administration, Rules Engine,
Setup, Define Categories, Rule Groups).

Use this page to add valid Rule Groups to this Rule Category or to restrict users to only being able to
build Rules by using one of the associated Rule Groups.

Rule Group Required Select to enforce Rule Group usage. When building Rules users
must select one of the Valid Rule Groups before being able to
build their Rules.

Valid Rule Groups Select Rule Groups.

Note: Rule Groups are added to this setup page automatically
when you add Rules to a Rule Group by using the Create Rule
Group option from Rules Engine Manager or by using Create
Rule Group from a Rule when on the Rules Engine Search
option page.

Access the Rule Category Security page (Set up SACR, System Administration, Rules Engine, Setup,
Define Categories, Security).

Image: Rule Category Security page

This example illustrates the fields and controls on the Rule Category Security page. You can find
definitions for the fields and controls later on this page.

Valid Roles Enter Valid Roles for which the Rules Category definition
is valid. These are Roles that are set up using the standard
PeopleTools Security function.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 17

Additional Users Enter additional users for which the Category Definition is
valid. The registration of Additional Users is supplemental to
the Valid Roles.

Access the Rule Category Cross Reference page (Set up SACR, System Administration, Rules Engine,
Setup, Define Categories, Cross Reference).

Image: Rule Category Cross Reference page

This example illustrates the fields and controls on the Rule Category Cross Reference page. You can find
definitions for the fields and controls later on this page.

This page shows Rules, Rule Groups, System Variables, and Triggers which have been created as part of
this Category.

Rule Name, Rule Group Name,
System Variable Name, and Trigger
Name

Displays to authorized users a link for any of these Rules Engine
objects that have been created in this Rule Category. If a user is
not authorized, the link is disabled.

Click a link to transfer out of the component and to the
referenced object.

Warning! Make sure you have saved any data that you need to
before confirming you want to transfer to the referenced object
in a new component.

Working with the Rules Engine Chapter _

18 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

If no objects are associated with the Rule Category, a
notification is shown in place of the object details. for example,
 “This Category is not used by any triggers”.

Version Displays the Rule Version Number.

Rule Status and Rule Group Status Displays the status of the Rule Group or Rule Name (In
Progress, Active, In-active).

Type Displays the Type of System Variable.

Defining Color Codes for Rules Engine Manager Elements

Note: The assigning of different colors to different Rules Engine Manager Elements for purposes of
displaying the Elements in different colors in user interfaces is optional and does not affect how a Rule is
used in System processing. If no color setup is done, all Element text is displayed in black.

A set of predefined color codes for the Rules Engine Manager user interface are delivered. The different
colors represent different types of elements of the Rule; for example, Rule Names, Statements, Variables,
etc. You can customize the colors and the Rule elements with which they are associated. The following
color codes are delivered:

Color Color Code ID

Dark Purple 380B61

Black 000000

Blue 0000ff

Red ff0000

Green 008000

Purple 800080

Brown a52a2a

Gray 808080

Dark Blue 0000a0

Yellow ffff00

Orange ffa500

Maroon 800000

Note: Colors delivered with the system cannot be modified.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 19

Access the Define Colors page (Set up SACR, System Administration, Rules Engine, Setup, Define
Colors).

Image: Define Colors page

This example illustrates the fields and controls on the Define Colors page. You can find definitions for the
fields and controls later on this page.

Although Oracle recommends using the pre-delivered color range, you can add new colors to the system
for the Rules Engine Manager user interface elements. New colors can be added simply by adding a new
entry, specifying a Color Name and a Color Code which conforms to the HTML color code standard.

Color Code ID Displays a unique ID generated by the system. When adding
a new value the default value is NOID. The unique ID is
generated when the Color Code is saved. The Color Code ID is
created by combining prefix SCC_COLORS_ with the system
date and time stamp in format YYYYMMDDHHMMSS.

Color Name Enter the name of the color; for example, Sky Blue.

Color Code Enter an HTML standard color code. New color codes can be
defined using HTML standards.

• HTML color codes format – Each HTML code contains
the symbol "#" and 6 letters or numbers. These numbers
are in hexadecimal numeral system; for example, "FF" in
hexadecimal represents number 255 in decimal.

• Meaning of the HTML color codes format – After the
“#” symbol, the first two positions in HTML color code
represent the intensity of red color. “00” is the least, and
“FF” is the most intense. The third and fourth positions
represent the intensity of green color, and the fifth and sixth
positions represent the intensity of blue color. By varying
the intensity of red, green and blue, you can create a large
number of colors.

Working with the Rules Engine Chapter _

20 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access the Define Rules Engine Text Colors page (Set up SACR, System Administration, Rules Engine,
Setup, Define Text Color).

Image: Define Rules Engine Text Colors page

This example illustrates the fields and controls on the Define Rules Engine Text Colors page. You can
find definitions for the fields and controls later on this page.

Use this page to assign colors to Rules Engine Manager elements. The following elements can be color
coded:

• Entity String

• Hard Coded Text

• Property

• Rule Name

• Statement

• Text

• Variable

• Call Argument

• Call Return

Defining Rules Engine Statements
Rules Engine Statements help you create business rules in the Rules Engine Manager to perform
specific processing Functions like assigning values to variables or creating Evaluative Statements. An
extensive set of Statements is delivered with the system to facilitate the creation of a comprehensive set

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 21

of Rules. The processing functionality for each statement is defined in Application Class PeopleCode
and associated with a Rules Engine Manager secondary page through a predefined work record. This
secondary page is used to display fields and logic associated with the Statement.

For more information, see Using Statements for Evaluation and Calculation in a Rule.

Note: For Statements delivered with the system, only the Long Description can be modified.

Note: Oracle may deliver additional Statements in the future. You are advised not to create your own
Statements at this time.

Access the Define Rules Engine Statements (Set up SACR, System Administration, Rules Engine, Setup,
Define Statements).

Image: Define Rules Engine Statements page

This example illustrates the fields and controls on the Define Rules Engine Statements page. You can find
definitions for the fields and controls later on this page.

Statement Displays a unique system-generated Rules Engine Statement
identifier. When adding a new value the default value is NOID.
The unique ID is generated when the Rules Engine Statement is
saved. The Rules Engine Statement ID is created by combining
prefix SCC_RULE_STMT_ with the system date and time
stamp in format YYYYMMDDHHMMSS.

Name Enter a Statement Name. The Statement Name is used when
searching for a Statement and for display.

Long Description Enter descriptive text explaining the function of the Statement.

Application Class Enter the Application Class for this Rules Engine Statement.
 Logic for system–delivered Statement functionality uses the
SCC_RULES_ENGINE:Statements Application Class.

Working with the Rules Engine Chapter _

22 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Warning! To ensure that delivered functionality works as
intended, do not change delivered Application Classes.

Page Name Enter the Page Name for this Rules Engine Statement. Each
Statement references a secondary page specifically created for
this Statement. The secondary page is used to display Statement
functionality to the end user. The Statement secondary pages are
pre–delivered and are designed to render Statement logic in a
specific way.

Warning! To ensure that delivered functionality works as
intended, do not change the Page Name for the Statement.

Record Name Enter the Record Name for this Rules Engine Statement. Each
Statement has a unique work record reference. The associated
work record is used to technically facilitate the information
shown on the secondary pages. The Statement work records are
pre–delivered and have been designed to render Statement logic
in a specific way.

Warning! To ensure that delivered functionality works as
intended, do not change the Record Name for the Statement.

Search Page Title Enter the Page Title for the Rules Engine Statement. The Page
Title is displayed at the top of the Statement grid once the
Statement has been selected for use in the Rule.

Encompassing Select to indicate whether the Statement created is an
encompassing statement. An Encompassing Statement is one
which can enclose one or more other Statements in the Rule.
 The following delivered statements are encompassing:

• IF (ELSE)

• For-each

• Create-Entity

For more information, see Using Statements for Evaluation and
Calculation in a Rule.

Define Rules Version Reason Codes
New versions of Rules can be created for each Rule, Trigger or Function. Rule Versions are managed
on the Rules Engine Manager Rule Version Page. New versions of Rules can be created for reasons like
needing to incorporate new Rule logic or correcting Rule mistakes. To facilitate Rule maintenance, use
Rule Version reason codes to indicate why a new version was created. Define Rule Version Codes on the
Rules Version Reason Code setup page.

Note: For Version Reason Codes delivered with the system, only the Description can be modified.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 23

Note: The system-delivered Version Reason Code of New Version of the rule is used automatically
whenever a new version of a rule is created. This Version Reason Code is delivered with the Initial
Version Default check box selected. If the Initial Version Default check box is not selected, the Version
Reason Code of New Version of the rule can be selected to be both the Initial Version Reason Code as
well as the New Version Reason Code.

Access the Define Version Reason Codes page (Set up SACR, System Administration, Rules Engine,
Setup, Define Version Reason Codes).

Image: Define Version Reason Codes page

This example illustrates the fields and controls on the Define Version Reason Codes page. You can find
definitions for the fields and controls later on this page.

Version Reason Code Displays a unique ID generated by the system. When
adding a new value the default value is NOID. The unique
ID is generated when Version Reason Code is saved.
 The ID is created by combining prefix SCC_RULE_
VRSN_ with the system date and time stamp in format
YYYYMMDDHHMMSS.

Name Enter a Version Reason Name. The Version Reason Name is
used when searching for a Version Reason and for display.

Description Enter descriptive text explaining the function of the Version
Reason Code..

Initial Version Default Select this check box to use this Version Reason code
automatically when the rule is created. Comments can be added
to the Version Reason code before the Version page is saved.
 The system-delivered Version Reason Code Initial Version of
the Rule is delivered with this check box selected.

New Version Default Select this check box to use this Version Reason Code
automatically whenever a new version of a rule is created. The
system-delivered Version Reason Code New Version of the rule
is delivered with this check box selected.

If the Initial Version Default check box for the system-delivered
Version Reason Code Initial Version of the Rule is not selected
and the system-delivered Version Reason Code New Version of

Working with the Rules Engine Chapter _

24 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

the rule is selected, the New Version Default reason is used for
both.

Setting Up Rules Engine Variables
This section discusses setting up Rules Engine Variables.

Understanding Rules Engine Variables
Variables provide you with a flexible way to create a temporary placeholder or storage location which can
be used in a Rule or passed from the current Rule to another. A Variable has a name and a certain type;
for example, “Text” or “Number”. The Variable starts out as empty storage and can be assigned a value,
cleared, and re-used.

For example, a Variable named “Total Units” is a variable of type “Number”. The Variable is used in a
Function that calculates Total Units from Course Units that are found in a specific Course List. At the end
of the Function, the Variable “Total Units” is displayed as the result or outcome of the Rule.

The following Variables can be created when working with the Rules Engine Manager:

• Rules Engine Manager Variables

• System Variables

• Data Sets

Rules Engine Manager Variables are created in a specific Rule and act as a storage place to temporarily
store a value in that particular Rule. The previously mentioned “Total Units” is an example. Such a
variable can be passed from one Rule to another, but it cannot be referenced by another Rule without
having been passed.

System Variables have been predefined in the Define System Variable component and have a specific
predefined value. System Variables are available for all Rules in the system and are intended to provide
values which are generic and are Variables that are appropriate in multiple situations. Their values do not
need to change from one Rule to the next. An example is “Current Date” which always provides the user
with value of the current system date. System Variables are typically created by Developers but, once
created, can be used by Functional Expert Users in their Rules.

Data Sets allow you to define multiple Variables that can be referenced as a group. When building more
complex Rules you may need more than one Variable as a temporary placeholder. There may be situations
where you need multiple temporary placeholders that can be stored together as a logical set of Variables.
For example, when calculating Total Units for multiple students in batch, you may need to not only store
the “Total Units” but also the Student (in the example below we store Student ID as well as Student
Name) and the Course List ID. In this case you may want to create three temporary Variables that can be
referenced together as a group. This is a Data Set. The Data Set described above would allow you to store
the following example data:

Student ID Student Name Course List ID Total Units

0000012 Brad Wilkinson Math100 12

0000011 Brenda Benson Math100 22

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 25

Student ID Student Name Course List ID Total Units

0000010 Billy Mathews Math100 18

Defining Rules Engine Manager Variables
Rules Engine Manager Variables can be defined whenever you need to use a named temporary storage
space of a specific type in which to store a value in the Rules Engine. You can pass that Variable to other
Rules or use the Variable to store data retrieved from other Rules. Variables are always created within a
Rule itself.

For more information, see Adding Variables to a Rule.

Defining Rules Engine System Variables
A System Variable is predefined in the system typically by a developer or programmer. Once created,
the System Variable can be used in Rules built by functional experts. System Variables can be created to
provide re-usable defaults for commonly used values such as system date, Operator ID, etc.

Note: Rules Engine System Variables delivered with the system cannot be modified.

Access the Define System Variables page (Set up SACR, System Administration, Rules Engine, Setup,
Define System Variables, Definition).

Image: Define System Variables page

This example illustrates the fields and controls on the Define System Variables page. You can find
definitions for the fields and controls later on this page.

System Variable ID Displays a unique ID generated by the system. When
adding a new value the default value is NOID. The unique
ID is generated when the system variable is saved. The
Statement ID is created by combining prefix SCC_RULE_
SYSVAR_ with the system date and time stamp in format
YYYYMMDDHHMMSS.

Working with the Rules Engine Chapter _

26 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

System Variable Name Enter a System Variable Name. The System Variable Name is
used when searching for a System Variable and for display.

Long Description Enter descriptive text explaining the function of the System
Variable.

Type Select the Type of Variable. Values are:

• Date

• DatetTime

• Text

• Time

• Number

• True/False (This Variable Type accommodates Boolean
values.)

Base Application Package Enter the Base Application Package for this System Variable.
The Base Application Package contains the logic that returns the
System Variable. System Variables can only be assigned using
application package PeopleCode. Delivered system variables
have been created in the reserved application package: SCC_
RULE_SYSTEM_VARIABLES:SystemVariables.

Note: Oracle expects to make new system variables available as
needed.

Rule Category Name Enter the Rule Category Name for this System Variable. This
restricts direct access to specific System Variables.

List Variable Select this check box if the System Variable needs to
accommodate the return of multiple values.

For a complete listing of System Variables delivered with the system for use in Rules and Functions by an
Expert user, see Library of System-Delivered Rules Engine Objects

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 27

Access the Define System Variables Cross Reference page (Set up SACR, System Administration, Rules
Engine, Setup, Define System Variables, Cross Reference).

Image: Define System Variables Cross Reference page

This example illustrates the fields and controls on the Define System Variables Cross Reference page.
You can find definitions for the fields and controls later on this page.

This page shows Rules and Rule Groups associated with this System Variable.

Rule Name and Rule Group Name Displays to authorized users a link for any of these Rules
Engine objects which use this System Variable. If a user is not
authorized, the link is disabled.

Click a link to transfer out of the component and to the
referenced object.

Warning! Make sure you have saved any data that you need to
before confirming you want to transfer to the referenced object
in a new component.

If no objects use the System Variable, a notification is shown in
place of the object details. for example, “This System Variable is
not used by any Rule Groups”.

Version Displays the Rule Version Number.

Rule Status and Rule Group Status Displays the status of the Rule Group or Rule Name (In
Progress, Active, In-active).

Variable Name Displays the name of the Variable associated with the System
Variable.

Rule Category Name Displays the Rule Category Name in which the Rule or Rule
Group has been created.

Defining Rules Engine Data Sets
Data Sets can be used in Rules when you need to create placeholders or temporary storage for multiple
Variables and reference those Variables together as a logical group. The Data Set can be used across any
Rule in the system and is not specific for one Rule alone.

Working with the Rules Engine Chapter _

28 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access the Define Data Sets page (Set up SACR, System Administration, Rules Engine, Setup, Define
Data Sets).

Image: Define Data Sets page

This example illustrates the fields and controls on the Define Data Sets page. You can find definitions for
the fields and controls later on this page.

Data Set ID Displays a unique ID generated by the system. When adding
a new value the default value is NOID. The unique ID is
generated when the Data Set is saved. The Statement ID is
created by combining prefix SCC_ENTITY_ with the system
date and time stamp in format YYYYMMDDHHMMSS.

Name Enter a Data Set Name. The Data Set Name is used when
searching for a Data Set and for display.

Actions • Clone Data Set – Select this option to copy from an existing
Data Set. A prompt is presented from which a Data Set can
be selected.

• Copy Properties from – Select this option to copy from an
Entity. A prompt is presented from which an Entity can be
selected. A Data Set Property is created for each Property
which exists on the selected Entity.

Description Enter descriptive text explaining the function of the Data Set..

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 29

Label Enter a Label for each of your Data Set properties. This Label
is used in the Rules Engine Manager to display the Data Set
Property.

Property Type Select the Property Type:

• Date

• DateTime

• Number

• String

• Time

Details Click on the Details link to access more information about each
Data Set Property.

Access the Data Sets Details page (click the Details link on the Define Data Sets page).

Image: Data Set Property Details page

This example illustrates the fields and controls on the Data Set Property Details page. You can find
definitions for the fields and controls later on this page.

The Data Set Property details page allows you to add a long Description for a Property and List of Values
(LOV) which can be used to enforce Prompt Edits.

For more information, see Defining Lists of Values for Rules Engine Variables.

Data Set Profile Name Select Entity Profiles to associate multiple Data Sets to a group
of Data Sets. The Category is used to search for Data Sets when
associating Rules Engine Variables with created Data Sets.

Working with the Rules Engine Chapter _

30 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

 There is no security tied into this functionality. A created Data
Set can be used by any Rule in the system.

Access the Define Data Sets Cross Reference page (Set up SACR, System Administration, Rules Engine,
Setup, Define Data Sets, Cross Reference).

Image: Define Data Sets Cross Reference page

This example illustrates the fields and controls on the Define Data Sets Cross Reference page. You can
find definitions for the fields and controls later on this page.

This page shows Rules and Rule Groups associated with this System Variable.

Rule Name and Rule Group Name Displays to authorized users a link for either of these Rules
Engine objects which use this Data Set. If a user is not
authorized, the link is disabled.

Click a link to transfer out of the component and to the
referenced object.

Warning! Make sure you have saved any data that you need to
before confirming you want to transfer to the referenced object
in a new component.

If no objects use the Data Set, a notification is shown in place
of the object details. for example, “This Data Set is not used by
any Rule Groups”.

Version Displays the Rule Version Number.

Rule Status and Rule Group Status Displays the status of the Rule Group or Rule Name (In
Progress, Active, In-active).

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 31

Variable Name Displays the name of the Variable associated with the System
Variable.

Rule Category Name Displays the Rule Category Name in which the Rule or Rule
Group has been created.

Defining Lists of Values for Rules Engine Variables
This section discusses defining lists of values for use with Rules Engine Variables. There are cross
references to information about adding lists of values to Entity Properties and Data Set Properties.

Understanding Lists of Values for Rules Engine Variables
List of Values (LOV) functionality allows you to add the functionality of prompting with edits against a
defined List of Values where there were no edits defined before. In Rules Engine Manager, a LOV can be
added to properties or variables of the following Types:

• Rules Engine Variable

• Entity Property

• Data Set Property

For example, take a Variable created in Rules Engine named “Institution” . When defined as a Variable
of type String and referenced in a Rules Engine Rule, any String value can be added to the Variable
and no editing is enforced. However, you may want to enforce that users can only add values to this
Variable that are valid according to the Institution Table defined in the system (Set up SACR, Foundation
Tables, Academic Structure, Institution Table). In order to enforce that edit, you can define a LOV on the
Institution Table. Once defined, the LOV can be tied to any Rules Engine Variable, Entity Property, or
DataSet Property which has the same Type (for example, String) as the defined LOV.

LOV Prompts may already exist on an Entity Registry Property. The Entity Registry automatically adds a
LOV prompt to a property for which the underlying record field contains a Prompt Table. Adding an LOV
to a property which already has an automatic prompt table defined overwrites that functionality.

For the Lists of Values are delivered with the system for the Rules Engine, see Library of System-
Delivered Rules Engine Objects.

Note: Lists of Values delivered with the system cannot be modified, but the Test button can be used to test
return of valid LOV values.

To understand more about how to add an LOV to an Entity Property, see Setting Up Entity Registry,
“Setting Up Entity Property Details.”

To understand more about how to add an LOV to a Data Set Property, see Defining Rules Engine Data
Sets.

To understand more about how LOV functionality can be used throughout the system, see Setting Up List
of Values.

Working with the Rules Engine Chapter _

32 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Defining Lists of Values – Ad Hoc Values
Access the Define List Of Values page (Set up SACR, System Administration, Rules Engine, Setup,
Define List of Values).

Image: Define List of Values – Ad Hoc Values page

This example illustrates the fields and controls on the Define List of Values – Ad Hoc Values page. You
can find definitions for the fields and controls later on this page.

Select LOV Type Ad Hoc Values if you want to prompt on a user-defined Value or List of Values that is
not related to a translate table or an existing prompt table.

LOV Unique ID Displays a unique ID generated by the system. When adding
a new value the default value is NOID. The unique ID is
generated when the LOV is saved. The UID is created by
combining prefix SCC_LOV_ with the system date and time
stamp in format YYYYMMDDHHMMSS.

Description Enter a LOV Description. The LOV Description is used when
searching for a LOV and for display.

LOV Type – Ad Hoc Values selected Create an LOV of Ad Hoc Values if you want to prompt on
a user-defined value or List of Values that is not related to a
translate table or an existing prompt table.

LOV Unique ID – Copy Ad Hoc
Values From grid

Select an LOV to copy by using the Search icon to find an
existing LOV Unique ID. Then add custom values in the Ad
Hoc Values grid.

Value – Copy Ad Hoc Values grid Enter an Ad Hoc Value from which you would like to copy
existing Ad Hoc values.

Description – Copy Ad Hoc Values
grid

Enter a Description for the Ad Hoc Value.

Test Click the Test button to display a preview of the values that will
be returned by the LOV when it is deployed as a prompt edit.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 33

Defining Lists of Values – Table
Access the Define List Of Values page (Set up SACR, System Administration, Rules Engine, Setup,
Define List of Values and select the Table radio button.

Image: Define List of Values – Table

This example illustrates the fields and controls on the Define List of Values – Table. You can find
definitions for the fields and controls later on this page.

Select an LOV Type of Table if you want to prompt on an existing Campus Solutions Prompt Table.

LOV Unique ID Displays a unique ID generated by the system. When adding
a new value the default value is NOID. The unique ID is
generated when the LOV is saved. The UID is created by
combining prefix SCC_LOV_ with the system date and time
stamp in format YYYYMMDDHHMMSS.

Description Enter a LOV Description. The LOV Description is used when
searching for a LOV and for display.

LOV Type – Table selected Create an LOV of type Table if you want to prompt on an
existing Campus Solutions Prompt Table.

Record Enter the Record where the prompt is found.

Field Select a Field for the prompt.

Description Field Select the Field from which the description should be taken.

Prompt Table Filters Select Field Names to further specify the selection. For example
in case of the Honors and Awards Table, the setup is defined by
Institution. To specify that only values from institution PSUNV
be retrieved, add the Field Name Institution and Field Value
PSUNV.

Exclude Prompt Field Values • Insert All Values – Click button to add all LOV values to the
excluded values list.

• Remove All Values – Click button to remove all LOV values
from the excluded values list.

Working with the Rules Engine Chapter _

34 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Test Click the Test button to display a preview of the values that are
returned by the LOV when it is deployed as a prompt edit. The
Test functionality uses the Exclude Prompt Field Values and
Prompt Table Filter settings.

Defining Lists of Values – Translate Values
Access the Define List Of Values page (Set up SACR, System Administration, Rules Engine, Setup,
Define List of Values and select the Translate Values radio button.

Create an LOV of type Translate Values if you want to prompt on an existing Campus Solutions Translate
Value.

Image: Define List of Values – Translate Values

This example illustrates the fields and controls on the Define List of Values – Translate Values. You can
find definitions for the fields and controls later on this page.

Select an LOV Type of Translate Values if you want to prompt on an existing Campus Solutions Translate
Values.

LOV Unique ID Displays a unique ID generated by the system. When adding
a new value the default value is NOID. The unique ID is
generated when the LOV is saved. The unique ID is created by
combining prefix SCC_LOV_ with the system date and time
stamp in format YYYYMMDDHHMMSS.

Description Enter a LOV Description. The LOV Description is used when
searching for a LOV and for display.

Field Enter the Record where the prompt is found.

Translate Usage Select the Translate Usage to be returned:

• Use Long Description

• Use Short Description

Exclude Prompt Field Values • Insert All Values – Click button to add all LOV values to the
excluded values list.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 35

• Remove All Values – Click button to remove all LOV values
from the excluded values list.

Test Click the Test button to display a preview of the values that will
be returned by the LOV when it is deployed as a prompt edit.
The Test functionality uses the Exclude Prompt Field Values and
Prompt Table Filter settings.

Access the Define List of Values Cross Reference page (Set up SACR, System Administration, Rules
Engine, Setup, Define List of Values, Cross Reference).

Image: Define List of Values Cross Reference

This example illustrates the fields and controls on the Define List of Values Cross Reference. You can
find definitions for the fields and controls later on this page.

This page shows Rules and Rule Groups associated with this System Variable.

Rule Name and Rule Group Name Displays to authorized users a link for either of these Rules
Engine objects which uses a variable with this List of Values. If
a user is not authorized, the link is disabled.

Click a link to transfer out of the component and to the
referenced object.

Warning! Make sure you have saved any data that you need to
before confirming you want to transfer to the referenced object
in a new component.

If no objects use the List of Values, a notification is shown in
place of the object details. for example, “This List of Values is
not used by any Rule Groups”.

Version Displays the Rule Version Number.

Rule Status and Rule Group Status Displays the status of the Rule Group or Rule Name (In
Progress, Active, In-active).

Variable Name Displays the name of the Variable that uses this List of Values.

Rule Category Name Displays the Rule Category Name in which the Rule or Rule
Group has been created.

Working with the Rules Engine Chapter _

36 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Example of an LOV Added to a Property from Record Field Prompts
The following is an example of an Entity Registry LOV which has been added to the Property due to
the fact that the underlying Record field was defined with a prompt table value. In this Rule, the Entity
Academic Program is used to retrieve applicants.

Image: Example of Define Rule Page Using a LOV from Field Record Prompts

This example illustrates the Define Rule page using a LOV from Field Record Prompts.

In this example in the Criteria grid, the Type of the Property with theLabel of EmplID is set to Text. Click
the Search prompt button to the right of the Object (value) for Property EMPLID to open a Lookup table.
This is the PEOPLE_SRCH Prompt for table. This functionality also works whenever a Property with a

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 37

Lookup table is used in combination with the Assign or IF Evaluative statements. The same Search values
are available and, if relevant, permission level security is enforced:

Image: Prompt Window for Example Of Define Rule Page Using A LOV From Field Record
Prompts

This example illustrates the Prompt Window for Example Of Define Rule Page Using A LOV From Field
Record Prompts.

The Search function behaves the same as if prompted from a normal search record or component:

Image: Example of Prompt Options from Component Search Record (Student Admissions,
Application Maintenance, Maintain Applications)

This example illustrates Prompt Options from Component Search Record (Student Admissions,
Application Maintenance, Maintain Applications).

Working with the Rules Engine Chapter _

38 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The Lookup functionality for EmplID Property is enabled by the Entity Registry. To view the Entity
Prompts, access the Entity Registry page (Set Up SACR, System Administration, Entity, Entity Registry).

Image: Entity Registry Window for Example of Define Rule Page Using a LOV from Field Record
Prompts

This example illustrates the Entity Registry Window for Example of Define Rule Page Using a LOV from
Field Record Prompts

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 39

Select Edit Properties from the Action drop-down to view the Entity properties:

Image: Entity Properties Window for Example Of Define Rule Page Using a LOV from Field
Record Prompts

This example illustrates Entity Properties Window for Example Of Define Rule Page Using a LOV from
Field Record Prompts.

Prompt values present in a production record or staging record of an Entity are added to the Entity
Registry automatically. Any Property which has inherited a Prompt from a production or staging record
is displayed as view-only in the LOV column of the Entity Properties page. In this example the field
EMPLID has inherited a prompt to the PEOPLE_SRCH table from the ADM_APPL_PROG production
record:

Image: Property and Prompt Table for Example of Define Rule Page Using a LOV from Field
Record Prompts

This illustrates the Property and Prompt Table for Example of Define Rule Page Using a LOV from Field
Record Prompts

When the Academic Program Entity is used to build Rules in the Rules Engine Manager, the prompt to
PEOPLE_SRCH becomes active. These prompts cannot be removed; however, they can be overridden by
adding a new LOV Lookup Table value to the Property.

Working with the Rules Engine Chapter _

40 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

For an example of a LOV Look Up Table that is NOT present on the production or staging record and
has been added to an Entity Property, select the Details link for property ACAD_CAREER in the Entity
Properties page example. This opens the Entity Properties Detail page where an LOV Lookup Table can
be added using the LOV Unique ID field for a relevant LOV:

Image: Entity Property Details Window for Example of Define Rule Page Using a LOV from Field
Record Prompts

This illustrates the Entity Property Details Window for Example of Define Rule Page Using a LOV from
Field Record Prompts.

Note: The Rules Engine automatically enforces the security used by security views by the OPRID or
OPRCLASS of the user who built the rule to the security view.

Note: %EDITABLE prompts do not enable look-up functionality in the Rules Engine.

Note: Performance should be considered when using prompts in the Rules Engine. Do not use look-up
tables in the Rules Engine user interface without providing at least one relevant field value.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 41

Constructing Rules

This section discusses how to:

• Use Rules Engine Search.

• Use Rule Engine Groups Search.

• Create Functional Rules.

• Add Variables to a Rule.

• Add Criteria to a Rule.

• Define Rule Groups.

• Define Rule Triggers.

You create all Rules, including Functions and Triggers, using the Rules Engine Manager. Functionality
available to create Rules is determined by:

• Skill Level (Expert or Developer)

• Rule Usage (Rule, Function, or Trigger)

• Rule Category

• Rule Group

Depending on user security as set up in Rule Category Security, the Rules Engine Manager can be
accessed using different Skill Levels. Skill Levels that can be selected are Expert or Developer, with
Developer having ability to create Rules where the logic is defined in Application Class PeopleCode.
Experts create Rule logic in the Rules Engine Manager Define Rule Page.

Note: Currently, the Rules Engine Manager can only be used by users with a Skill Level of Expert or
Developer.

An Example Rule
To help describe the process of creating a new Rule, an example scenario of creating a new academic
progression Rule is used throughout this documentation. This Rule evaluates data in the Academic
Progress Tracker (APT). The example assumes that the Rule is run as part of a batch process at the
end of a specific Academic Year; targeting all students in a specific Academic Program (Bachelor of
Psychology) and student cohort. The purpose of the Rule is to find out whether students have obtained
enough credits to progress to the from Year 1 to Year 2 of their academic program. The Rule is setup to
run for a particular student.

Working with the Rules Engine Chapter _

42 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Pages Used for Constructing Rules
Page Name Definition Name Navigation Usage

Rule Search SCC_RULE_SRCH_SEC Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
the Search for a Rule radio
button and click Next.

Search for existing Rules. You
can also save Searches.

Rule Group Search SCC_RULEGRSRCH_SEC Set up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Search for a Rule radio
button and click Next.

Search for existing Rule
Groups. You can also save
Searches.

Define Rule SCC_RULE_GOV Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
the Search for a Rule radio
button and click Next. Enter
Search criteria, click the
Search button, select a Rule
from the results and click
Next.

Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
the Add a New Rule radio
button and click Next.

Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
the Create a Rule from a Rule
radio button and click Next.

Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
the Create a Rule from a Rule
radio button and click Next.
Enter Search criteria, click the
Search button, select a Rule
Group from the results, and
click Next.

Define Rules.

Add a New Variable SCC_RULE_VARD_SEC Click the Add a New Variable
button on the Define Rule
page.

Add Variables to a Rule.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 43

Page Name Definition Name Navigation Usage

Rule Groups Categories SCC_RULEGR_CAT Set up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Search for a Rule Group
radio button and click Next.
Enter Search criteria, click the
Search button, select a Rule
Group from the results, and
click the Categories tab.

Set up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Add a New Rule Group
radio button, click Next and
click the Categories tab.

Set up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Create a Rule Group from
Group radio button and click
Next. Enter Search criteria,
 click the Search button, select
a Rule Group from results,
 and click the Categories tab.

Define valid Rule Categories
for a Rule Group.

Working with the Rules Engine Chapter _

44 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Page Name Definition Name Navigation Usage

Define Rule Groups
Definition

SCC_RULEGR_MGR Set up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Search for a Rule Group
radio button and click Next.
 Enter Search criteria, click
Search button, select a Rule
Group from results.

Set Up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Add a New Rule Group
radio button and click Next.

Set Up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Create a Rule Group from
Rule radio button and click
Next. Enter Search criteria,
 click the Search button, and
select a Rule from the results.

Set Up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Create a Rule Group from
Group radio button and click
Next. Enter Search criteria,
 click the Search button, and
select a Rule Group from the
results.

Define Rule Groups.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 45

Page Name Definition Name Navigation Usage

Rule Groups Cross Reference SCC_RULEGR_MGR Set Up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Search for a Rule Group
radio button and click Next.
Enter Search criteria, click the
Search button, select a Rule
Group from results, click the
Cross Reference tab.

Set Up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Add a New Rule Group
radio button, click Next, and
click the Cross Reference tab.

Set Up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Create a Rule Group from
Rule radio button and click
Next. Enter Search criteria,
 click Search button, select a
Rule from results, and click
the Cross Reference tab.

Set Up SACR, System
Administration, Rules Engine,
Define Rule Groups, select
the Create a Rule Group from
Group radio button and click
Next. Enter Search criteria,
 click Search button, select a
Rule Group from results, click
the Cross Reference tab.

View Rules associated with
the Rule Group.

Define Rule Triggers SCC_RULE_TRIG Set Up SACR, System
Administration, Rules Engine,
Setup, Define Rule Triggers

Define Rule Triggers to
determine from where in the
system a Rule can be called.

Using Rules Engine Search
Rules Engine Search is the starting point for the following activities:

• Searching for Rules.

• Adding new Rules.

• Creating a new Rule from an existing Rule.

• Creating a new Rule for a Rule Group.

Working with the Rules Engine Chapter _

46 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access the Rules Engine Search page (Set up SACR, System Administration, Rules Engine, Rules Engine
Manager).

Image: Rules Engine Manager Search page

This example illustrates the fields and controls on the Rules Engine Manager Search page. You can find
definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 47

Searching for a Rule
In the Rule Engine Manager search page, select Search for a Rule and click on the Next button to open
Rules Search options page.

Image: Rule Search Options page

This example illustrates the fields and controls on the Rule Search Options page. You can find definitions
for the fields and controls later on this page.

Rule Category Name is a required field. If a unique Rule ID is known and the user has access to the Rule
Category, the Rule Category is automatically selected and not required.

The following fields can be used with wildcard search option “%” and are case-sensitive:

• Rule Name

• Rule Group Name

• Long Description

Click the Search button and any results are displayed in a grid below the Search fields. If there are no
results, a message appears.

Click the Reset button to clear the Search fields.

Click the Cancel button to return to the Rules Engine Manager search page.

To save the Search, enter a name in the Saved Search field and click the Save button.

To delete a Saved Search, enter the name in the Saved Search field and click the Delete button.

Working with the Rules Engine Chapter _

48 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

In the Search results grid, select the Select check box or click on the Details icon to select a Rule.
Clicking the Details icon also displays a panel below the Search results grid displaying the Long
Description, Rule Category, Rule Group Name, Rule Usage, and Entity Name of the Rule.

Click the Next button to open the selected Rule in the Rules Engine Manager and edit your Rule.

Click the Previous button to return to the Rules Engine Manager search page.

Adding a New Rule
In the Rules Engine Manager search page, select Add a new Rule and click on the Next button to open the
Rules Engine Manager page where you can define the parameters of your new Rule.

For more information, see Constructing Rules.

Creating a New Rule from an Existing Rule
In the Rules Engine Manager search page, select Create a Rule from a Rule and click on the Next button
to open the Rule Search page.

When you have found the Rule you want to clone, click Next to open the Create New Rule from Rule
page and provide a New Rule Name and/or Long Description.

Image: Create New Rule From Rule page

This illustrates the Create New Rule From Rule page.

A new Rule is created with Rule Status In Progress , and it inherits all the Variables, Criteria, and
evaluative statements from the Rule you selected to clone

New Rule Name Enter a name for the new Rule. The New Rule Name must be
different from the original Rule Name.

Long Description The Long Description of the original Rule populates this field
and can be edited for the new Rule.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 49

Creating a New Rule from a Rule Group
In the Rules Engine Manager search page, select Create a Rule from a Rule Group and click on the Next
button to open the Rule Group Search page, which is similar to the Rule Search page.

When you have found the Rule Group to which you want to add a Rule, click Next to open the Create a
New Rule from Rule Group page and provide a New Rule Name and/or Long Description. A new Rule is
created with Rule Status In Progress, and it has inherited the Input and Output Variables, Entity Profile,
Rule Category Name, Rule Usage, Entity name, and Skill Level of the Rule Group to which it has been
added. This means that the Rule Category Name, Rule Group Name, Rule Usage, Entity Name, and Skill
Level are predetermined and cannot be altered for this new Rule.

Additional Rule Search Options
Access the Rule Definition page (Set Up SACR, System Administration, Rules Engine, Rules Engine
Manager, select Search for a Rule, search for and select a Rule, Define Rule).

Image: Rule Search Results and Select Action Options Example

This example illustrates the fields and controls on the Rule Search Results and Select Action Options
Example. You can find definitions for the fields and controls later on this page.

Search Result Click this button to return to the Rule Search Options Page.
 Search results are displayed from last executed search, and
the last selected Rule is highlighted. The Search Results button
is only available when the search actions Search for a Rule or
Create Rule from Rule are used.

Select Actions Click this button to return to the Rules Engine Manager to select
a new search action: Search for a Rule, Add a new Rule, Create
Rule from Rule, or Create a Rule from Rule Group.

Using Rule Groups Search
Rule Groups Search is similar to Rules Engine Search and is the starting point for the following activities:

Working with the Rules Engine Chapter _

50 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Searching for a Rule Group.

• Adding a new Rule Group.

• Creating a new Rule Group from an existing Rule.

• Creating a new Rule Group from an existing Rule Group.

Access the Define Rule Groups Search page (Set Up SACR, System Administration, Rules Engine,
Define Rule Groups).

Searching for a Rule Group
In the Rule Group search page, select Search for a Rule Group and click on the Next button to open Rule
Group Search options page.

Image: Rule Group Search Options page

This example illustrates the fields and controls on the Rule Group Search Options page. You can find
definitions for the fields and controls later on this page.

Rule Category Name is a required field. If a unique Rule Group ID is known and the user has access to
the Rule Category, the Rule Category is automatically selected and not required.

The following fields can be used with wildcard search option “%” and are case-sensitive:

• Rule Category Name

• Rule Name

• Rule Group Name

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 51

• Long Description

Click the Search button and any results are displayed in a grid below the Search fields. If there are no
results, a message appears.

Click the Reset button to clear the Search fields.

Click the Cancel button to return to the Define Rule Groups search page.

To save the Search, enter a name in the Saved Search field and click the Save button.

To delete a Saved Search, enter the name in the Saved Search field and click the Delete button.

In the Search results grid, select the Select check box or click on the Details icon to select a Rule.
Clicking the Details icon also displays a panel below the Search results grid displaying the Long
Description, Rule Category Name, Entity Name, Rule Usage, and all Input and Output variables as they
are key features of the Rule Group Template.

Click the Next button to open the selected Rule Group in the Rule Groups Manager and edit your Rule
Group.

Click the Previous button to return to the Define Rule Groups search page.

Adding a New Rule Group
In the Define Rule Groups page, select Add a New Rule Group and click on the Next button to open the
Rules Groups Definition page where you can define the parameters of your new Rule Group.

For more information, see Defining Rule Groups.

Creating a New Rule Group from an Existing Rule
In the Define Rule Groups search page, select Create a Rule Group from Rule and click on the Next
button to open the Rule Search options page.

When you have found the Rule you want to base your new Rule Group on, click Next to open the Rule
Groups Manager component. A new Rule Group is created with Rule Group Status In Progress, and it has
inherited all the Variables, Entity Name, Skill Level and Rule Usage from the Rule you selected.

Note: The Rule Name is also copied. As a first step, you should rename the Rule Group Name to avoid
confusion.

Creating a New Rule Group from an Existing Rule Group
In the Define Rule Groups search page, select Create a Rule Group from Group and click on the Next
button to open the Rule Group Search page, which is similar to the Rule Search page.

When you have found the Rule Group that you want to clone for a new Rule Group, click Next to open
the Rule Group Manager component. A new Rule Group is created with Rule Group Status In Progress,
and it has inherited the Input and Output Variables, Entity Profile, Rule Category Name, Rule Usage,
Entity Name, and Skill Level of the Rule Group chosen to clone.

Note: The Rule Group Name is also copied from the selected Rule Group. As a first step you should
rename this Rule as to avoid confusion.

Working with the Rules Engine Chapter _

52 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

For more information on how to create and edit Rules, see Defining Rule Groups.

Additional Rule Group Search Options
Access the Rule Definition page (Set Up SACR, System Administration, Rules Engine, Define Rule
Groups, select Search for a Rule Group, search for and select a Rule Group, Definition).

Image: Rule Group Search Results and Select Action Options Example

This example illustrates the fields and controls on the Rule Group Search Results and Select Action
Options Example. You can find definitions for the fields and controls later on this page.

Search Result Click this button to return to the Rule Groups Search Options
page. Search results are displayed from last executed search, and
the last selected Rule Group is highlighted. The Search Results
button is only available when the search actions Search for a
Rule Group or Create Rule Group from Group are used.

Select Actions Click this button to return to the Define Rule Groups search
page to select a new search action: Search for a Rule Group,
Add a New Rule Group, Create a Rule Group from Rule, or
Create a Rule Group from Group.

Creating Functional Rules
The section describes how to create functional Rules.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 53

Access the Rules Engine Manager Define Rule page (Set up SACR, System Administration, Rules
Engine, Rules Engine Manager, select Add a New Rule, Define Rule).

Image: Define Rule page

This example illustrates the fields and controls on the Define Rule page. You can find definitions for the
fields and controls later on this page.

Note: For Rules delivered with the system and that have System Data displayed in the Rules Engine user
interfaces, only the Long Description can be modified.

Rule ID Displays a unique ID generated by the system. When adding
a new value the default value is NOID. The unique ID is
generated when the Rule is saved. The Rule ID is created by
combining prefix SCC_RULE_ID_ with the system date and
time stamp in format YYYYMMDDHHMMSS.

Action Note: The list of available Actions is dynamic depending upon
the Rule Status.

Note: For System-delivered Rules, only the Build Rule, Create
New Group from Rule, Create New Rule from Rule, and Update
Status Information (if Rule Status is Not Built) Actions are
available.

Select an Action for this Rule Group:

Working with the Rules Engine Chapter _

54 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Activate Rule – An In Progress Rule can be activated using
the Activate Rule Action.

• Build Rule – Opens the Build Rule window.

• Create New Group from Rule – Selecting this Action
transfers you to the Rule Group component. This Action is
only available when a Rule is Active and not used by another
Rule. The parameters for the new Rule Group are predefined
based on the Rule from which it is being created.

• Create New Rule from Rule – This action clones the current
Rule and creates a new Rule using the values from this Rule.

Note: The Name of the new Rule is copied exactly from the
current Rule so your first action should be to rename the
Rule.

• Create New Version of Rule – Use this Action

to introduce changes to Active Rules. By design, Rules are
versioned rather than effective dated. Only one Version
of a Rule can be active at any given time. This Action
creates a new Version of the Rule with status In Progress.
Activating the newest Version inactivates the previous
Version automatically.

• Delete Rule – Rules can be deleted. When choosing this
Action, a warning is displayed, and, after choosing “OK”,
 the Rule is deleted.

• Inactivate Rule – An In Progress Rule can be inactivated
using the Inactivate Rule Action.

• Remove Base Entity – Use this Action to remove the Base
Entity from this Rule. This Action is available when Rules
have a status of In Progress or Active. For Active rules,
 the setup option to allow changes to active rules must
be selected. If the Rule has references to any Entity or
Property which is logically part of the Base Entity Hierarchy
structure, for example a child Entity or Property, then a
warning is displayed.

Note: The Base Entity cannot be removed if the Rule is
attached to a Rule Group.

• Remove Rule Group from Rule – If you use this Action,
create new version of Rule and deselect the “Available
in Other Rules” check box in the old Version/inactivated
version. This Action is only available when a Rule is part of
a Rule Group and has a Rule Status of In Progress.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 55

Note: Concerning the effects of adding a New Rule Group
to an existing Rule:
When a Rule Group needs to change and new Input or
Output Parameters need to be added or removed, the process
requires that you create a new copy (clone) of the Rule
Group. New Parameters and Fields are then added to the
New Rule Group. As the Rule Group provides the template
for Rule Input and Output, all Rules associated with the old
Rule Group need to move to the new Rule Group. This can
be done using the following steps:
1. Deselect the Available in Other Rules option of the Rule
attached to old Rule Group.
2. Create a new Version of the Rule attached to the old Rule
Group. This action creates a new Version of the Rule with a
Rule Status of In Progress.
3. Remove the Rule Group attached to the new Version of
the Rule.
4. Add a new Rule Group to the new Version of the Rule.
When a Rule Group is removed using the Remove Rule
Group from Rule option, a new Rule Group can be added
using the Rule Group Name prompt search. When adding
a Rule Group to a Rule, the Rule must have the same or
fewer input and output parameters than the Rule Group.
 New input and output Parameters can be added from the
Rule Group to a Rule. In the case where there are input or
output parameters defined on the Rule which do not exist in
the Rule Group, they must be removed from the Rule first
before adding it to the Rule Group.
Make any other needed changes to the new Version of the
Rule, build the Rule, and test all changes. Then, activate
the new Version of the Rule. The old version of the Rule is
automatically deactivated.

• Test Rule – Opens the Test Rule window.

For more information, see Testing Rules.

• Update Status Information – Use this Action to refresh page
information and view the latest Rule Build Status.

Version Displays the Version number of the Rule.

Rules are automatically versioned. The first version of a Rule is
1. Only one version of a Rule can be active at any given time.
 The Action drop down can be used to inactivate an Active Rule
and to create a new Rule Version. When creating a new Version,
the previous Version automatically becomes Inactive.

Rule Status Displays the Rule Status

• Active

Working with the Rules Engine Chapter _

56 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Inactive

• In Progress. This is the initial Rule Status assigned when
creating a Rule.

Rule Build Status Displays the Rule Build Status. Values are:

• Rule Not Built – The Rule has never been built.

• Build Not Current – A change has been made to this Rule
since the last build which may warrant a rebuild.)

• Build Failed – The build/compilation process for the Rule
ran to error. Consult the process scheduler message log to
view the error.

• Build Successful — The Rule was built without errors.

Status Last Date/Time Displays the Last Date/Time of the Rule Build Status in native
format including an indication of time zone. This field does not
display until after an attempt to build this Rule.

Rule Name Enter a Rule Name. The Rule Name is used when searching for
a Rule and for display.

Long Description Enter descriptive text explaining the function of the Rule.

Rule Category Name Enter the Rule Category Name. The Rule Category restricts
access to Rule Usages, Rule Categories, and Entities.

Available Rule Categories are limited to those for which you
have been authorized. This is determined by a Role or our User
ID.

If you have access to multiple Rule Categories, you should
choose the Rule Category that is most appropriate considering
the data that the Rule needs to access and any Functions that
the Rule may need to call. Functional Expert users who create
Rules may not necessarily be familiar with how to create Rule
Categories so should be provided with instructions by Rules
Engine Administrators about the Rule Categories for which
they have been authorized. For example, depending on your
institution's policy, Functional Experts may only be authorized
to use a single Rule Category.

Rule Group Name Enter a Rule Group Name if this Rule needs to conform to a
specific template with predefined input and output Variables and
a predetermined Base Entity.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 57

Note: Oracle recommends adding a Rule Group Name directly
after you have created your Rule or Function and before adding
Entity Profiles, Rule Usages, or Variables as they may conflict
with those that are defined in the Rule Group.
If you select a Rule Group that has Variables, a Rule Usage,
 or Base Entity that conflicts with the Rules you are creating, a
warning message appears and the Rule Group is not added.

Rule Usage Select a Rule Usage of Function, Rule, or Trigger. The available
Rule Usages are limited to those for which the user has been
authorized through Rule Category setup.

The selected Rule Usage impacts availability of Rules Engine
Manager functionality as follows:

• Rule: The Criteria grid, the Variables Grid, and Evaluations
and Calculations grids are available.

• Function or Trigger: The Variables grid and Evaluations
and Calculations grids are available. The Criteria grid is not
available.

Selection of Rule Usage needs to consider how this Rule is used
and what tasks it needs to perform.

• Rule – Rules can be used stand-alone (when executed from
the Rules Tester), called from other Rules, or called from a
Batch Process. Rules need criteria in order for the correct
data to be selected from the system.

• Trigger – Triggers are meant to be tied to a specific system
event using the Trigger component. Triggers which are
delivered with the System can be versioned; unlike other
Rules or Functions. This means that when a Trigger has
been attached to a Trigger component and marked as
System, you can create a new Version of the Trigger which
can subsequently be edited.

• Function – A Function is a reusable Rule that performs a
specific task, often performed in the context of a larger Rule.
 For example, when creating a Rule that evaluates whether
Total Credit is greater than a specific Credit amount,
 first the Sum of all Credit needs to be established. The
“Add” Function could be used to do nothing other than add
retrieved Credit to a Credit total. The “Add” Function could
be used to add any numeric value in the system, not just
Credit, making it very reusable. A Function does not need
specific criteria in order to determine an exact set of data. In
this Rule Creation example, it only needs a numeric input to
perform its task.

Working with the Rules Engine Chapter _

58 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

When a Function uses a Base Entity, information to
determine an exact set of data is passed from the calling
Rule to the called Function using Contextual Reference.

See Understanding Contextual Referencing.

This example is using a Rule Usage of Rule and Skill Level
of Expert to demonstrate the use of Criteria to identify a
specific set of data. The Criteria in this example are used
to identify the exact student Academic Progress Tracker
data from the Base Entity as chosen by selecting an Entity
Name. If data from other application areas is needed, it can
be collected using other Functions.

Entity Name Enter the Entity to use as the Base Entity for the Rule. The Base
Entity controls which application data you have access to when
creating a Rule, Function, or Trigger. The Entities available are
limited to those for which user has been authorized by attaching
Entity Profiles to Rule Categories in the Rule Category setup.

Identifying which data to use by designating the Base Entity can
be considered the “starting point” of the creation of a functional
Rule. Further, using the designated Base Entity with the Rule
Criteria makes it possible to identify the exact record to use in
the Rule. For a Function that uses a Base Entity, the exact data
needed is passed from caller to called Function using Contextual
Reference.

In this example, a Rule is being created that look at Student
Progression; therefore, the Rule needs to access Student Results
Data as stored in the Academic Progress Tracker (APT) records.
 The APT data is represented in the Entity APT Header. By
selecting the APT Header as the Base Entity, you can access all
of the data associated with the APT Header Entity Tree. This
means that you have access to all logical child Entities in that
Tree structure like APT Program of Study, APT Course List,
 and APT Course as well as other data associated with those
Entities.

As with Rule Categories, Functional Expert users should be
provided with instructions on selecting Base Entities. Also
consider that since the available Base Entity is determined by
the selected Rule Category, it could be that only one Base Entity
is presented for selection.

For more information, refer to Defining Rule Category Security
and Understanding Contextual Referencing.

See Setting Up Entity Registry.

View Entity Hierarchy Click this link to display the Entity Hierarchy view for the Base
Entity attached to the Rule.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 59

Skill Level Select the Skill Level required for creating this Rule:

• Expert – This Skill Level has access to all features delivered
with Rules Engine.

• Developer – This Skill Level has limited access to Rules
Engine features. A user accessing the Rules Engine Manager
and selecting Developer Skill Level is assumed to create
Rules using Application Package PeopleCode. The Criteria
Grid and Evaluations and Statements Grid are not available
with Developer Skill Level.

In this example, a functional Rule is being created and there
is no “coding” occurring. Therefore, a Skill Level of Expert is
being used to demonstrate the Statement, Operator, Function,
 and Variable features.

Rule Application Class Note: This field is available and required when Skill Level is
Developer.

Enter or select a Rule Application Class. A Rule Application
Class can be selected from a list of Extension Application
Classes.

Warning! Developer Rules should be built by Developers/
Programmers who have extensive experience with Application
Package/Class PeopleCode programming. Developers working
with the Rules Engine should be familiar with Entity Registry
concepts.

Entity Data Load Option Note: This field is available and required when the Rule Usage
is Rule and an Entity Name has been entered.

Select the Data Load Option when creating a Rule.

• Select Data by Criteria: This is the default option. The
Criteria grid is available. Data from the attached Entity is
selected according to Criteria provided.

• Select All Data: The Criteria grid is not available. All data is
retrieved from attached Entity and brought into the Rule.

• Select No Data: The Criteria grid is not available. No
data is retrieved from the attached Entity. Use this option
when the intent is to insert a new row of data into the Base
Entity using the CREATE-ENTITY statement without first
retrieving data.

Logging Level Select the Logging Level to use when testing this Rule:

• Error Messages – The first level of logging. This option
only show errors.

Working with the Rules Engine Chapter _

60 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Informational Messages – This option shows all
informational messages.

• No Message Logging – Turns off logging at the build level.

Note: Oracle recommends that all Rules run on a production
environment have this setting to optimize performance.

• Trace Logging – Show all errors, warning, errors,
 information messages, and the following:

Note: Oracle recommends using the Trace Logging option
to see correct trace results when testing Rules.

• Statements

Descriptions from the Rules Engine for every Statement
that is run. If the internal Function has Trace Logging,
 its Statements are also shown. An internal Function
is a Function which is called by the main Rule. If the
Function itself does not have Trace Logging settings, no
trace options are shown for the called Function.

• Variable Maps

The complete Variable Map, every variable and its
value, is shown at the beginning and the end of each run
along with any Variable Map for any called Function or
Rule if Trace Logging for that Function or Rule is turned
on.

A Variable map example is Assign V_StudentID =
‘SSRN0012’ as an example to where a Variable is
assigned.

• Call Statements

All arguments sent in and all returns received in the log
file.

• XML Dump of the Entity Before Rule Execution

The XML Dump is created for rules with Entity
Processing. The XML Dump contains a dump of the
Base Entity prior to Entity processing.

• XML Dump of the Entity after Rule Execution

The XML Dump is created for rules with Entity
Processing. The XML Dump contains a dump of the
Base Entity after Entity processing has completed. Any
changes to the Entity (inserted or updated data) are
reflected in the Entity Dump.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 61

• Warning Messages – This options shows all errors and
warnings.

• Write to Log – Select this option to create a log file when
processing Rules in Batch. Write to Log can be used in
combination with Statement “Write To Log”

Note: Oracle recommends using the Trace Logging option to
see correct trace results when testing Rules.

Available To Be Used Select this check box if you want to allow this Rule or Function
to be available for use by other Rules or feature functionality. If
you do select this check box, it is recommended that you do so
after adding Variables and Criteria to the Rule and finalizing the
functionality for your Rule.

Note: Save the Rule after completing the first portion of the Definition tab (everything above the
Available in Other Rules check box) and before adding Variables and Criteria. At this point the Rule
Status is In Progress, and the Rule can still be changed and retested.

Note: You cannot version Rules with a Rule Usage of Rule or Function that are delivered with the System
and that have System Data displayed in the Rules Engine user interfaces. These Rules must be copied
(cloned) and a new Rule or Function created.
You can version Rules with a Rule Usage of Trigger that are delivered with the System and have System
Data displayed in the Rules Engine user interfaces.

Adding Variables to a Rule
Once Rule options are defined, you can add the Variables you want to use in the Rule. The Variables grid
on the Rules Engine Manager Definitions tabs is display-only. The grid shows whether variables are in
use and whether they are used as input, output or required. Variables can be created before starting to
incorporate evaluations or calculations or added on the fly.

Since the object of this example Rule is to determine whether students may or may not progress from
Year 1 to Year 2 within an Academic Program, you already know that you want to return the Progression
Status as output. You also know that you want to ensure that the process that calls this Rule can pass the
correct parameters to retrieve a specific student. That is our input.

Working with the Rules Engine Chapter _

62 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

To add a Variable, access the Add a New Variable page (click the Add a Variable button on the Rule
Definition page).

Image: Add a New Variable page

This example illustrates the fields and controls on the Add a New Variable page. You can find definitions
for the fields and controls later on this page.

Type Select the Variable Type that you want to add:

• Data Set

• Date

• Datetime

• Number

• Text

• Time

• True/False

Type is displayed in the Variables grid and can be selected when
viewing or adding Variables.

List Select this check box if the variable is a List variable which
can contain multiple values. Use this option in combination
with Type to obtain a list of specific values. List is displayed in
the Variables grid and can be selected when viewing or adding
Variables. Selecting this check box activates the Default Values
button and the Default List Values field.

System Variable Select this check box if the variable is a System Variable
predefined in setup outside of this Rule. System Variable is
displayed as System in the Variables grid and can be selected
when viewing or adding Variables. Selecting this check box

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 63

activates the System Variable Search button and the System
Variable Name field.

Argument Name Enter an Argument Name for Variable. The Argument Name is
used when searching for a Variable and for display.

Long Description Enter descriptive text explaining the function of the Variable.

Input Select this check box if the variable is an Input Variable. Input
is displayed in the Variables grid and can be selected when
viewing or adding Variables.

Required Select this check box if the variable is required. Required
is displayed in the Variables grid and can be selected when
viewing or adding Variables.

Output Select this check box if the variable is an Output Variable.
 Output is displayed in the Variables grid and can be selected
when viewing or adding Variables.

Default Value Click this button to open the Create Default List Values page.
 Add List Values in the Value column and click the OK button.

Note: This button is available when the List option is selected.

To remove a List Value, select the corresponding Remove check
box for a Value and click the Remove Selected Values button.

Note: If the List option is not selected, Default Value is an edit
field. A Default Value can be entered here for this Variable.

Default List Values Displays values for this Variable created using the Create
Default List Values page.

System Variable Search Click this button to open the Prompt for Rules Engine System
Variables page. This button only appears when System Variable
is selected above.

System Variable Name Displays the selected System Variable Name. This field only
appears when System Variable is selected above.

LOV Search Click this button to open the Prompt for LOV Searches page.

Search on a Field Name of Description, Dropdown Prompt
Filed, Edit Table, LOV Context, or LOV Unique ID.

Results display a Descr (description) link. Click the link to
select an LOV. This returns you to the Add a New Variable page
with the LOV Search Name displayed.

Note: LOV Search results display a list of all available LOV
values. The list is not limited to those LOV values which have
been created specifically for the Rules Engine.

Working with the Rules Engine Chapter _

64 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Delete LOV Click this button to remove an LOV. This button becomes
visible when a LOV has been attached to the variable

LOV Search Name Displays selected LOV.

Default Value Search Click this button to open the Prompt for (selected LOV) page.

Search on a Field Name of Description or Value.

Results display a Values link.

Click the link to select a Default Value. This returns you to the
Add a Variable page with the Default Value displayed.

Default Value Displays Default Value.

Clear Default Value Removes default value from Variable.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 65

Adding a Data Set Variable to a Rule
When a Data Set variable Type is selected, there are different options to select.

Image: Add a New Variable – Data Set Option

This example illustrates the fields and controls on the Add a New Variable – Data Set Option. You can
find definitions for the fields and controls later on this page.

Data Set Search Click this button to open the Prompt for Entity page.

Search on a Field Name of Data Set ID, Entity Name, or Entity
Profile Name.

Results display a Entity Profile link. Click the link to select an
Entity. This returns you to the Add a New Variable page with
the Data Set Name and the Data Set Properties grid displayed.
 The Data Set Properties grid displays the Property Type and
Label of each Variable in the Data Set

Data Set Name Displays the Data Set Name.

Clear Data Set Value Click this button to remove the Data Set from the Variable.

Working with the Rules Engine Chapter _

66 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Edit Data Set Click this button to open a secondary page to add default values
to the Data Set.

Adding Criteria to a Rule
Once Rule options are defined and Variables are added for a Rule Usage of Rule, you can add Criteria to
identify data from the chosen Base Entity. In the example being followed in this documentation, you want
to add all criteria needed to identify and select the correct APT instance record for a particular student.

Note: If you are creating a Rule with a Rule Usage of Function, there is no option to add Criteria. For
more information, see Understanding Contextual Referencing.

To add Criteria, expand the Criteria group box by clicking the arrow to the left of Criteria in the group
box header.

Image: Criteria Grid – Initial Row

This example illustrates the fields and controls on the Criteria Grid – Initial Row. You can find definitions
for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 67

Then, click the Search icon to the right of the Label field to open the Prompt for page where you can
select an Entity Property.

Image: Prompt for page

This example illustrates the fields and controls on the Prompt for page. You can find definitions for the
fields and controls later on this page.

Click the Academic Institution link to select it as a Property. The Prompt for page closes, and you return
to the Criteria grid with the Label column in the first row populated with Academic Institution. The
Operator you want to use is = and the Variable Type you want to use is Variable, both of are already
populated by default in this case. Since Type Variable is selected, the Search icon appears to the right of
the Object field.

Image: Example of Criteria Grid – Label Populated

This example illustrates the fields and controls on the Example of Criteria Grid – Label Populated. You
can find definitions for the fields and controls later on this page.

Working with the Rules Engine Chapter _

68 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Click the Search icon to the right of the Object field to open the Add/Select Variable page.

Image: Add/Select a Variable page

This example illustrates the fields and controls on the Add/Select a Variable page. You can find
definitions for the fields and controls later on this page.

Select the check box next to the Variable you want to add, and click the Add button.

Once you've selected all the Criteria you want to add, the Criteria grid looks something like this:

Image: Example of Criteria Grid

This example illustrates the fields and controls on the Example of Criteria Grid. You can find definitions
for the fields and controls later on this page.

In this example, there is an assumption that a batch process is responsible for supplying the correct
Variables to our Rule. This is why the Variables selected for the Criteria grid are Input Variables.

Here is more information about fields in the Criteria grid:

Label Displays the name of the Property. Clicking the Search icon to
the right of the Label field opens the Prompt for page where you
can select from a list of properties from the Base Entity that is
added in field Entity Name on the Rule Definition page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 69

Connectors and Parentheses In the left-most columns of the Criteria grid are the AND/OR
connectors and parenthesis. Select these to create complex (
nested) Select Criteria.

Image: Example of Connectors and Parentheses

This example illustrates the fields and controls on the Example of Connectors and Parentheses. You can
find definitions for the fields and controls later on this page.

Operator Select an Operator to relate the Property Label to the Type/
Variable. The Operator is a symbol or function used to express
a mathematical function or logical action. The following
Operators can be used when adding a Criteria line:

• < (less than)

• <= (less than or equal to)

• <> (not equal to)

• = (equal to)

• > (greater than)

• >= (greater than or equal to)

• Exists and Not Exists – The Exists and Not Exists operators
can be used in combination with Types Text, Variable,
 Numbers, Date, Datetime, and Time. When using these
Operators, an argument only exists on the left side of the
operator, the Label. These Operators work differently based
on the Object type:

• If the Object is a string, Exists is true if Argument 1 is a
non-blank value.

• If the Object type is a number, Exists is true then
whenever a value greater than 0 is found.

Working with the Rules Engine Chapter _

70 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• If the Object type is a date, time or date time, Exists is
true if the value is anything other than null.

• If the Object type is Boolean, the operator always
returns True since true and false are both valid values.

• In and Not In – The In and Not In operators can only be
used in combination with Type of Variable. The Variable in
question needs to be a Variable of type List.

• Like and Not Like – The Like and Not Like operators can be
used in combination with Type Text and Variable. Numeric
values in string fields can also be evaluated:

• “%” (percent sign) – Use at the beginning or end of
string to replace any length value in the comparison.

• “_” (underscore) – Use to replace a single alphabetic
value in the comparison.

• “#” (hash or pound sign) – Use to replace a single
numeric value in the comparison.

• AsOfDate – This operator automatically performs Effective
Date selection as per standard Effective Dated processing.
 The AsOfdate operator is only available when the Base
Entity has an Effective Date Key field.

• FirstSeq and LastSeq – These operators allow you to select a
minimum or maximum effective sequence for those Entities
that have an effective sequence Key field. The LastSeq and
FirstSeq are only available on Base Entities with key field
Effective Sequence.

Type Select the Type of Object Property to be compared to the
Label Property. The chosen Operator controls what Types are
available.

For the Operators Exists and Not Exists, no Type can be chosen.

For the Operators In and Not In, only Variables of Type List can
be chosen.

Here are the available types:

• Date

• Datetime

• Number

• Property

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 71

• Text

• Time

• True/False

• Variable

Object The Object field behaves differently depending on which Type
or Operator is chosen.

The Object field is an open edit field except in the following
cases:

• The Object field is not available when the Operator is Exists
or Not Exists.

• The Object field changes to a prompt when the Type is
Variable, True/False, Property, or when LOV prompting has
been enabled for properties.

For more information, see the Defining Lists of Values for
Rules Engine Variables section.

Help Hover your cursor over the Help icon (question mark) to open a
popup window for information on how to use the selected Type
and/or Operator.

Here are possible options for Types and Objects in the Criteria grid:

Label Operator Type Object

Numeric Property =

<>

>

>=

<

<=

Variable

or

Number

Open field

or

Prompts on Number Variables.

String Property =

<>

>

>=

<

<=

Variable

or

Text

Open field

or

Prompts on Text Variables.

Working with the Rules Engine Chapter _

72 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Label Operator Type Object

Date(time) Property =

<>

>

>=

<

<=

Variable

or

Date(time)

Open field

or

Prompts on Date(time)
Variables.

Date Property and field name
is Effective Date

Asofdate Variable Variable

Special handling exists for
selection of Effective Date.
 For Entities with an Effective
Date, you can choose to have
the system automatically
select the maximum Effective
Date.

Number Property and field
name is Effective Sequence

FirstSeq

LastSeq

No value available Special handling exists
for selection of Effective
sequence. For entities with
an effective sequence the
user can choose to have the
system automatically select
the maximum or minimum
effective sequence.

Can be used in combination
with the Asofdate option.

List Property In

Not In

Variable List Variable which matches
property Type

Text Property Like

Not like

Variable

Text

Open field

or

Text Variable

Property of any type Exists

Not exists

No value available <no value>

If the Property is a Date or
Date(time), any value not
equal to Null exists.

If the Property is a Number,
 any number unequal to 0 (
zero) exists.

If the Property is a String, any
value unequal to space (blank)
exists.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 73

Defining Rule Groups
This section covers defining Rule Groups.

Understanding Rule Groups
Rules that share the functional purpose and have similar functionality, input and output can be grouped
together in a Rule Group. For Rules to share the same Rule group, they must:

• Be based on data in the same Entity Tree and use the same Entity Registry item as the basis for that
Rule. This Entity is known as the Base Entity.

• Share the same required input parameters.

• Share a subset of non-required input parameters.

• Share the same output parameters and can pass back required output.

• Belong to the same Rule Category, giving them the same security Rules.

One advantage of combining Rules in Rule Groups is that it allows you to call all Rules associated with a
Rule Group dynamically. You would not have to know before the fact which Rules you are calling. Rule
Groups that have been created can be called from other Rules, Triggers or Functions in the Rules Engine
Manager using the “CALL DYNAMIC RULE GROUP” Statement. In short, by allowing Rules to call
Rules from Rule Groups dynamically without specifying Rules or Functions directly, it is possible to
dynamically call one or more Rules with similar functionality.

For example, an institution has created an Academic Item Registry program with courses from which the
student can choose. For all those courses that require a prerequisite, a functional Rule is created that takes
the course selected as input and checks whether the student meets the prerequisite requirement. When
students select courses to add to their Academic Progress Tracker (APT), the prerequisite is checked, and,
based on the outcome, a message is displayed to the student indicating whether or not he or she may add
the course to their APT.

Example Rules for this scenario could be:

• Students must have completed Introduction to Calculus or Elementary Algebra before attempting
Advanced Calculus

• Students must have completed Introduction to Psychology and have completed 10 credits from the
“Human Studies” Course List before attempting Advanced Psychology.

Another advantage to creating Rules in the same Rule Group is the ability to control that the input and
output for all Rules in the Rule Group is the same.

Each of these Rules needs to take the selected Course as input as well as information from the program
of study and the student. All Rules above would return a similar outcome of true or false as well as a
message that can be displayed. The Rules can be grouped together in the same Rule Group.

Working with the Rules Engine Chapter _

74 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Note: Rule Groups should be created by Rules Engine Experts or Developers. The settings used in Rule
Groups are enforced for any Rule added to the Rule Group. Once a Rule has been added to a Rule Group,
the Rule's input and output parameters cannot be altered; however, it is still be possible to add to and
alter Statements in the Evaluations and Calculations grid. Also, Rule Groups with Active Rules attached
cannot be changed.
You may find it challenging to define a new Rule Group with input and output variables and
specifications for the Base Entity if you have not built the actual Rule that will be using the Rule Group .
When building Rules, some experimentation is in order, and it is not always clear before the fact what
exactly the input and the output of a Rule needs to be. Rule logic is optimized during the build process,
and input or output Variables may need to be added based on new specifications or insights. Therefore, it
may not be possible to define a template for input and output before any Rule has been built.
Rule Groups can also be created from Active Rules using the Rules Engine Manager Action Create Rule
Group. Rule Groups can also be created using one of the available Rules Engine Search options.

Defining New Rule Groups
Access the Rule Groups Manager Categories page (Set up SACR, System Administration, Rules Engine,
Define Rule Groups, select Add a New Rule Group, select the Categories tab).

Image: Define Rule Groups Categories page

This example illustrates the fields and controls on the Define Rule Groups Categories page. You can find
definitions for the fields and controls later on this page.

Note: For Rule Categories delivered with the system, only the Long Description on the Definition page
and Rule Groups and Security pages can be modified

Rule Category Enter the Rule Categories for this Rule Group. Rule Groups are
tied to one or more Rule Category Names.

Note: Assign categories first before selecting a Base Entity in
the Definition tab.

Entity Name Enter the Entity for the Rule Group. The Entity entered here is
the Default Base Entity for any Rules added to this Rule Group.
 The Base Entity controls which application data You have
access to when building the Rule, Function, or Trigger.

View Entity Hierarchy Click this link to display the Entity Hierarchy view for the Base
Entity attached to the Rule Group.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 75

Access the Rule Groups Manager Definition page (Set up SACR, System Administration, Rules Engine,
Define Rule Groups, select Add a New Rule Group, select the Definitions tab).

Image: Define Rule Groups Definition page

This example illustrates the fields and controls on the Define Rule Groups Definition page. You can find
definitions for the fields and controls later on this page.

Action Note: For System-delivered Rule Groups, only the Create Rule
from Rule Group and Create Rule Group from Group Actions
are available.

Select an Action for this Rule Group:

• Activate Rule Group – In Progress Rule Group can be
Activated using the Activate Rule Group option.

Note: When creating a Rule Group from an Active or In
Progress Rule, the Rule Group is immediately active and
does not need not be activated. The Activate Rule Group
action is not available.

• Create Rule from Rule Group – This action creates a Rule
from the current Rule Group using the values (Variables,
 Rule Usage, Entity Profile from the Current Group). If
multiple Categories are present for the Rule Group you are
prompted to select one.

Note: The Create Rule from Group action is only available
for Active Rule Groups.

• Create Rule Group from Group – This action clones the
current Rule Group and creates a new Rule Group using the
values from this Rule Group.

Working with the Rules Engine Chapter _

76 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Note: The Name of the new Rule Group is copied exactly
from the current Rule Group so your first action should be to
rename the Rule Group.

• Delete Rule Group – Rule Groups can be deleted. When
choosing this option a warning is displayed first. After
choosing OK the Rule is Deleted. This is only available if no
Rules are attached to this Rule Group

• Inactivate Rule Group – Active Rule Groups can be
inactivated using the Inactivate Rule Group option. This is
only possible if no Rules are attached to the Rule Group

• Remove Base Entity – Use this Action to remove the Base
Entity from this Rule Group. This Action is available when
Rules have a status of In Progress or Active. For Active
Rule Groups, the setup option to allow changes to active
Rules must be selected. If an Active Rule Group has Rules
attached, then the Base Entity may not be removed.

Note: The Base Entity cannot be removed if the Rule is
attached to a Rule Group.

Note: The Inactivate Rule Group and Delete Rule Group actions
are not available for Rule Groups with Active Rules attached.

Rule Group ID Displays a unique ID generated by the system. When
adding a new value the default value is NOID. The unique
ID is generated when the Rule Group is saved. The Rule
Group ID is created by combining prefix SCC_RULEGR
ID with the system date and time stamp in format
YYYYMMDDHHMMSS.

Rule Group Status • In Progress

• Active

Used By X Rules Displays the number of Rules associated with this Rule Group;
includes Active and Inactive Rules.

Rule Group Name Enter a Rule Group Name. The Rule Group Name is used when
searching for a Rule Group and for display.

Long Description Enter descriptive text explaining the function of the Rule Group.

Rule Usage • Function

• Rule

• Trigger

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 77

Available To Be Used Select this check box if you want this Rule Group to be
available for use by the statement CALL DYNAMIC RULE
GROUP.

Note: If the Allow Changes to Active Rules check box on the
Rule Engine Install Options page is not selected, the Available
in Dynamic Rules check box cannot be selected here.

Dynamic Rule Variable A Dynamic Rule Variable is always created when a Rule Group
is created. This Variable is used when calling Rules using the
Dynamic Rule Group statement to call the required Rule ID.

Add a Variable Select this button to open the Add a New Variable page.

For more information, see Adding Variables to a Rule.

Access the Rule Groups Manager Cross Reference page (Set up SACR, System Administration, Rules
Engine, Define Rule Groups, search for a Rule Group and select the Cross Reference tab).

Image: Define Rule Groups Cross Reference page

This example illustrates the fields and controls on the Define Rule Groups Cross Reference page. You can
find definitions for the fields and controls later on this page.

This page shows Rules and Rule Groups associated with this System Variable.

Rule Name Displays to authorized users links for Rules attached to this Rule
Group. If a user is not authorized, the link is disabled.

Click a link to transfer out of the component and to the
referenced object.

Warning! Make sure you have saved any data that you need to
before confirming you want to transfer to the referenced object
in a new component.

If no objects use the Rule Group, a notification is shown in
place of the object details; for example, “This Rule Group is not
used by any Rules”.

Version Displays the Rule Version Number.

Rule Status Displays the status of the Rule (In Progress, Active, In-active).

Working with the Rules Engine Chapter _

78 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule Category Name Displays the Rule Category Name in which the Rule has been
created.

Defining Rule Triggers
After a Trigger Rule is defined, a Trigger Definition can be created. Trigger Definitions allow you to
associate the Trigger Rule to a Component Event or an Entity Method and generate PeopleCode that can
be added to the associated component, record, or field event specified on the Define Rule Triggers page
using the Generate Code button.

Note: The component helps to generate Template PeopleCode but does not automatically add this code
to the specified event. You may want or need to adjust generated code to add institution specific business
logic.

Access the Define Rule Triggers page (Set Up SACR, System Administration, Rules Engine, Setup,
Define Rule Triggers).

Image: Define Rule Triggers page

This example illustrates the fields and controls on the Define Rule Triggers page. You can find definitions
for the fields and controls later on this page.

Trigger ID Displays a unique ID generated by the system. When adding
a new value the default value is NOID. The unique ID is
generated when the Rule Trigger is saved. The Trigger ID is
created by combining prefix SCC_RTRIG_ with the system date
and time stamp in format YYYYMMDDHHMMSS.

Name Enter a Trigger Name. The Trigger Name is used when
searching for a Trigger and for display.

Trigger Description Enter descriptive text explaining the function of the Trigger.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 79

Event Note: This field is only available if the Trigger Type is Online
Application.

Choose the PeopleCode Component Event to add to the Trigger:

• FieldEdit

• FieldChange

• SavePostChange

• SaveFieldChange

Component Note: This field is only available if the Trigger Type is Online
Application.

Select from a list of available Components in the environment
by Component Name or Description.

Record Note: This field is only available if the Trigger Type is Online
Application.

Select from a list of available records for the selected
Component or any record in the system if no Component is
selected by Record Name or Description.

Field Note: This field is only available if the Trigger Type is Online
Application.

Select from a list of available fields for the selected Record
selected by Field Name or Description.

Rule Category Name Select from a list of Rule Categories for which the “Allow
Trigger” option has been selected on the Define Rule Categories
definition page by Rule Category Name or Long Description.

Rule Name Select a Rule to associate with the Trigger.

For information about integrating the Rules Engine with a user interface, see Integrating User Interfaces
with the Rules Engine

Using Statements for Evaluation and Calculation in a Rule

The section discusses how to:

• Activate and move Statements within a Rule.

• Apply Rule concepts and add Statements to a Rule.

Working with the Rules Engine Chapter _

80 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Pages for Using Statements for Evaluation and Calculation in a Rule
Page Name Definition Name Navigation Usage

Select a Statement SCC_RULE_STMT_SEC On the Define Rule page,
 click the Details icon on a
blank row in the Evaluations
and Calculations group box.

Select a Statement to add to a
Rule.

Define If Statement SCC_RULE_IF_SEC On the Select a Statement
page, select IF.

Select an If Statement for a
Rule.

Define Else Statement SCC_RULE_ELSE_SEC On the Select a Statement
page, select ELSE.

Select an Else Statement for a
Rule.

Define For-Each Statement SCC_RULE_FOR_SEC On the Select a Statement
page, select FOR EACH.

Select a For-Each Statement
for generic loop processing
for a Rule.

Exit For-Each Statement SCC_RULE_EXTF_SEC On the Select a Statement
page, select EXIT FOR
EACH.

Select to exit a For-Each loop.

Define Assignment Statement SCC_RULE_ASGN_SEC On the Select a Statement
page, select ASSIGN.

Select an Assignment
Statement to assign data to an
object.

Define Call Statement SCC_RULE_CALL_SEC On the Select a Statement
page, select CALL.

Select a Call Statement to call
a Rule.

Exit Rule Statement SCC_RULE_EXTR_SEC On the Select a Statement
page, select EXIT RULE.

Insert to exit a Rule.

Create Entity SCC_RULE_CREN_SEC On the Select a Statement
page, select CREATE
ENTITY.

Create an Entity within a
Rule.

Call Dynamic Rule Group SCC_RULE_DYNR_SEC On the Select a Statement
page, select CALL
DYNAMIC RULE GROUP.

Insert to call a dynamic Rule
Group.

Define Add To List Statement SCC_RULE_LADD_SEC On the Select a Statement
page, select ADD TO LIST.

Select an Add to List
Statement to add a value to a
list in a Rule.

Define Length of List
Statement

SCC_RULE_LENL_SEC On the Select a Statement
page, select LENGTH OF
LIST.

Select a Length of List
Statement to return the length
of a list in a Rule.

Define Sort List Statement SCC_RULE_SRTL_SEC On the Select a Statement
page, select SORT LIST.

Define an Sort List Statement
to sort a list for a Rule.

Define Clear List Statement SCC_RULE_LCLR_SEC On the Select a Statement
page, select CLEAR LIST.

Select a Clear List Statement
to reset a List variable to
empty in a Rule.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 81

Page Name Definition Name Navigation Usage

Write to Log Statement SCC_RULE_WLOG_SEC On the Select a Statement
page, select WRITE TO LOG

Select a WRITE TO LOG
statement to log the contents
of variables.

Understanding Statements for Evaluation and Calculation in a Rule
You can use delivered Rules Engine Statements in the Rules Engine Manager Evaluations and
Calculations grid to set up evaluative logic for your business Rules or Functions. Available Statements
can be used to perform a specific task in the Rule you have created.

Access the Select a Statement page (click the Details icon on the left side of an empty row in the
Evaluations and Calculations grid).

Image: Delivered Statements

This example illustrates the fields and controls on the Delivered Statements. You can find definitions for
the fields and controls later on this page.

Understanding Common Statement Attributes
When you select a Statement, a Define Statement page opens. Each Statement has a Define Statement
page created specifically for that Statement. Although each Define Statement page is different, there are
common fields and elements shared by all Statements. Each Define Statement page for each delivered
Statement is explained below, but, first, to illustrate the common attributes of the Statement, access the

Working with the Rules Engine Chapter _

82 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Define If Statement page (select the check box next to the IF Statement Name on the Select a Statement
page).

Image: Example of Common Statement Attributes on a Statement Page

This example illustrates the fields and controls on the Example of Common Statement Attributes on a
Statement page.. You can find definitions for the fields and controls later on this page.

Connectors and Parentheses
Use the AND/OR connectors and parenthesis to create complex (nested) Statement definitions.

Image: Example of Connectors and Parentheses

This example illustrates the fields and controls on the Example of Connectors and Parentheses. You can
find definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 83

Current Context
Displays the Current Context of the Statement. The Current Context provides information about the
current Entity you are working with when you have a Rule that accesses multiple layers in a Data
Hierarchy represented by the Base Entity. You always have access to properties from the Current Context
and the immediate Parent. For example, when working with the Academic Progress Tracker (APT) using
System Data only, your Current Context could be one of the following:

Image: Example of Academic Progress Tracker Entity Hierarchy

This example illustrates the fields and controls on the Example of Academic Progress Tracker Entity
Hierarchy. You can find definitions for the fields and controls later on this page.

In our example, the context is set to APT Header which means that we are able to use as data, within our
IF Statement, all properties from the APT Header. If our current context had been APT Program of Study
we would have been able to use all properties from the APT Program of study as well as the APT Header.

Rule Statement Summary
Displays a summary of the entire evaluative statement. The view is shown in color. Bold type indicates
which Statement you are currently working with.

If you have not yet added a Statement, this is shown as "Current New Row".

Current Statement
Displays the short description of the Current Statement you are working with as well as the options for
this Statement.

Override Auto Description
Select the Override Auto Description check box to override the Generated Description and provide your
own using a Rich Text Editor.

Understanding Statement–Specific Attributes
Each delivered Statement contains Statement-specific features; as described below with examples.

Working with the Rules Engine Chapter _

84 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

IF Statements
Use this statement to create evaluative Statements in your business rule. This is an encompassing
statement; meaning that within the context of this statement, you can use other statements.

This example evaluates whether or not a student has achieved a sum of credits higher than 60 in Year 1 of
his program. If the condition is met, the student may progress to Year 2.

Image: Example of IF Statement before Saving

This example illustrates the fields and controls on the Example of IF Statement before Saving. You can
find definitions for the fields and controls later on this page.

The possible combinations of Objects and Types in IF Statements are:

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 85

Type Object Operator Type Value

Property

or

Data Set Property (DS
Prop)

or

Variable

Prompts on Properties

or

Prompts on Variables

>

<

>=

<=

=

Like

Not like

Variable

or

Text (String Property)

or

Number (Number
Property or Number
Variable)

or

Date(time)

or

Data Set Property

Prompt on Variable
which matches a
Data Set Property or
Variable Type.

or

Text entry in an open
field if Type is Text.

or

Numeric entry in open
field if a Variable is
numeric.

or

Date(time) in an open
field if a Data Set
Property or Variable is
Date(time).

or

Prompt on Data
Set Property which
matches Property or
Variable Type

Property

or

Data Set Property (DS
Prop)

or

Variable

Prompts on Data Set
Properties

or

Variables

In

Not in

Variable List Variable

Property

or

Data Set Property (DS
Prop)

or

Variable

Prompts on Data Set
Properties

or

Variables

Exists

Not exists

no value no value

Working with the Rules Engine Chapter _

86 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The saved IF Statement looks like this:

Image: Example of IF Statement After Saving

This example illustrates the fields and controls on the Example of IF Statement After Saving. You can
find definitions for the fields and controls later on this page.

ELSE Statements
Combine ELSE statements with IF statements to create complex evaluative business Logic. This
statement can only exist in the context of an IF statement. The ELSE statement page itself offers no
features besides the possibility to override the auto-generated text.

Note: If you do not already have an IF statement in your Rule, the ELSE statement is not shown as an
option on the Select a Statement page.

This example evaluates whether or not a student has achieved a sum of credits higher than 60 in Year 1 of
his program. If the condition is met, the student may progress to Year 2. However, if the student has less
than 60 credits but greater than 40 credits, this student may need to repeat courses from Year 1.

Image: Define ELSE Statement page

This example illustrates the fields and controls on the Define ELSE Statement page. You can find
definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 87

Here is an example of how an Evaluative Statement can be created combining IF and ELSE statements:

Image: Example of IF and ELSE Statements Used Together

This example illustrates the fields and controls on the Example of IF and ELSE Statements Used
Together. You can find definitions for the fields and controls later on this page.

FOR EACH Statements
Use this statement to scroll through a set of elements which has been retrieved into the Rule. These
elements can be Entities retrieved in the context of a Rule or Variables from a list of Variables. The FOR-
EACH statement is an encompassing statement; meaning you can use other statements within the context
of the FOR-EACH.

For example, to scroll through the Academic Progress Tracker entity to retrieve all courses in a program,
select a FOR-EACH statement:

Image: Define FOR-EACH Statement page

This example illustrates the fields and controls on the Define FOR-EACH Statement page. You can find
definitions for the fields and controls later on this page.

Statement-specific fields on this page are:

Working with the Rules Engine Chapter _

88 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Entity Processing Select this option to activate the Entity Name prompt and
Process Immediate Children Only check box.

List Variable (list variable radio
button)

Select this option to activate the List Variable prompt.

Entity Name Select an Entity.

List Variable (list variable field) Select a List Variable.

Process Immediate Children Only Select this check box to process only immediate child records of
the selected Entity. This means only a direct child record of the
Entity is used in the process; not grand children of great-grand
children in the same Entity structure.

For example, you want to evaluate whether a student has achieved a sum of credits higher than 60 in Year
1 of his program of study in order to progress to Year 2. To calculate the overall credit total, you must
first retrieve all courses for Year 1 and sum the credits of each course. First, you retrieve Year 1 for the
student, and then you use a FOR EACH (course) statement to loop through all courses and retrieve the
credits.

Since the Courses in Year 1 may be part of a Course List or a Requirement and not an immediate child
of the Year, you do not want to select the "Process Immediate Children Only" option. However, if you
wanted to make sure that you only process immediate children of the Year, you do want to select this
option.

EXIT FOR EACH Statement
The EXIT FOR EACH statement is only available in the context of a FOR EACH statement. Use this
statement to exit scrolling through a set of elements which has been retrieved into the Rule. These
elements can be Entities retrieved in the context of a Rule or Variables from a list of Variables.

For example, you want to evaluate whether a student completed Course Math 101 in Year 1 of his
program of study. If the condition is met, the student may progress to Year 2. When the condition has
been met (Math 101 course has been found), there is no need to retrieve other Courses from the system.
The EXIT FOR EACH can be used to exit the for each loop at this time.

ASSIGN Statements
Use this statement to assign values to Variables or Properties in your Rule

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 89

For example, to assign Credit = 2 to Variable Credit, select the ASSIGN statement from the Select a
Statement page:

Image: Define Assignment Statement page

This example illustrates the fields and controls on the Define Assignment Statement page. You can find
definitions for the fields and controls later on this page.

The possible combinations of Objects and Types in ASSIGN Statements are:

Working with the Rules Engine Chapter _

90 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Type Object Operator Type Value

Property

or

Data Set Property (DS
Prop)

or

Variable

Prompts on Properties

or

Prompts on Variables

= Variable

or

Text (String Property

or

Number (Number
Property or Number
Variable)

or

Date(time)

or

Data Set Property

Prompt on Variable
which matches Data
Set Property Type or
Variable Type.

or

Text entry in open field
if Type is Text.

or

Numeric entry in
open field if Data Set
Property or Variable is
numeric.

or

Date(time) in open field
if Data Set Property or
variable type is Date(
time).

or

Prompt on Data Set
Property which matches
Property or Variable
Type.

CALL Statements
Use this statement to call a Function or Rule from within the current Function or Rule. The current Rule
is the Calling Rule. The Function or Rule called executes a piece of business logic in the context of the
Calling Rule.

When you call a Rule, you need to pass all Criteria for that Rule as input to that Rule otherwise the correct
data cannot be selected.

When you call a Function which uses Entity Data, you do not need to provide Criteria to find the correct
data. That data is passed to the called Function automatically through Contextual Referencing.

In this example, a student is evaluated to see if he has achieved a sum of credits greater than 60 in Year 1
of his program of study 1. If that condition is met, the student may progress to Year 2. In order to obtain
the student's credit total, you must first to retrieve all courses for Year 1 and sum the credit result by
retrieving each course to obtain the overall sum of credit. This is done using a FOR EACH statement
that retrieves Year 1 and loops through all Courses and retrieves credits. This uses an Add math Function
to add Course Credits to a variable, SumCredit. At the end of the FOR EACH loop, the total number of

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 91

credits for all courses in Year 1 is counted. Here is a similar example of the Add Function Add being
called from a Rule:

Image: Define Call Statement page

This example illustrates the fields and controls on the Define Call Statement page. You can find
definitions for the fields and controls later on this page.

These are the Call Statement-Specific fields:

Rule Category Select a valid Rule Category from which to retrieve the
Function you want to use. The Rule Category available must
be one of the valid categories on the Rule Category Definition
page.

Rule Name Click the Search icon to the right of the Rule Name to open the
Rules Engine Search page and select a Rule.

Click the Go To icon to the right of the Rule Name to open a
new page that displays information on Rule Definition, Version
History, and Cross Reference.

Inputs Select an Argument and Type for each Object. This is required
so that all Input can be passed from the Calling Rule to the
Called Function. The arguments are the Input Variables that
have been defined in the Called Function. The Operator field
is restricted to only show the Equals to operator. The Type is
restricted to the Type that is assigned to the Argument.

Outputs Select a Type and Object for each Output. The Return represents
the Variable(s) that has been defined as Output Variable in

Working with the Rules Engine Chapter _

92 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

the called Function. The Type is restricted to the Type that is
assigned to the Argument.

EXIT RULE Statement
Use this statement to exit a Rule or Function in its entirety. The outcome for this Rule would be to process
to success.

For example, to find out whether a student completed Course Math 101 in Year 1 of his program of study,
you can create a Rule to retrieve only that information. If you have use a FOR EACH statement in the
Called Rule to scroll through all of the courses in Year 1, you can use an EXIT RULE statement to exit
the FOR EACH loop and the Rule entirely once the condition has been met.

CREATE ENTITY Statement
Use this statement to create an Entity. After the Entity is created, the user is transferred to the context of
the created Entity and all Entity properties are available.

You can only create an Entity in the context of a parent Entity. For example, when in the context of APT
Course, you can create Entity APT Attempt, and when working in the context of APT Attempt, you can
create and APT Result Entity or APT Schedule Entity.

Image: Example of APT Header Hierarchy

This example illustrates the fields and controls on the Example of APT Header Hierarchy. You can find
definitions for the fields and controls later on this page.

When the Entity is created, it does not yet exist in the database. The CREATE ENTITY statement can be
used together with the delivered Function Save Entity to insert new rows into database tables.

Note: You can only create an Entity as a child within the Entity of the Current Context.

The following Functions can be used after having changed an entity or after having created an entity:

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 93

Function Function Description

SaveEntity Saves the Current Entity in context and all of its children.
 Performs all validation and pre-save logic and deletes any
entities marked for deletion.

SaveAllEntities Saves all the Entities in context and all of their children.
 Performs all validation and pre-save logic and deletes any
entities marked for deletion.

DeleteEntity Marks the Current Entity and all of its children for deletion.
 SaveEntity Function must be called to actually delete the
Entity.

UndeleteEntity Marks the Current Entity and all of its children to be un-
deleted. SaveEntity Function must be called to actually delete
the Entity

Warning! Using the CREATE ENTITY statement in combination with delivered Functions which
can save an Entity, like the Save Entity Function, inserts data into referenced database tables. These
Statements and Functions should only be used by experienced users with a Skill Level of Expert who
have a good understanding of the Campus Solutions record structure. Rules Engine administrators should
minimize risk by allowing Functional Experts to create Entities but not authorizing them to use one of the
Save Entity Functions or by creating separate Functions in which CREATE ENTITY and SAVE ENTITY
statements are combined.

For example, continuing the example of evaluating whether a student has achieved a sum of credit higher
than 60 in his program of study year 1, you can use the CREATE ENTITY statement to create and Entity
to store the result of that calculation in the APT result. Once the Entity is created, you populate the
appropriate fields with values. In this case, Result value with the Sum of Credits retrieved by the Rule.
To do this, use the Assign statement to assign the actual Sum of Credits to the Result value property for
Result Type Sum Credit. Once assigned, you can save the Entity, which creates a row in the database
using the system delivered Function Save Entity.

Note: The Rules Engine Manager has logic which validates nested Create Entity Statements that are
present in the Evaluations and Calculations Grid upon saving the Rule.
A Create Entity Statement cannot be added to a Rule that is invalid, but it is possible to invalidate an
existing Create Entity statement by removing a Statement from the Evaluations and Calculations grid or
by deactivating a line on the Evaluations and Calculations grid. This would make the overall Rule invalid.
For example, if a Create Entity statement is used to create the APT Attempt followed by a Create Entity
statement to create the APT Result row, and the Create Entity APT attempt row is removed from the
Evaluations and Calculations grid or moved to a new position after having been added, the overall Rule
becomes invalid.
The APT Result can only exist in the Rule as a child to APT Course and not as a child to APT Attempt.
Deletion, moving, and deactivating statements while the Rule is being built is allowed because the action
may have been done in the course of correcting the Rule. However, when the Rule is saved, the whole
Rule is validated and appropriate warning messages are displayed.

Working with the Rules Engine Chapter _

94 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

CALL DYNAMIC RULE GROUP Statements
Use this statement to call a Rule from a dynamic Rule Group. A Rule Group provides Rules with a
standard template with predefined input and output parameters as well as a Base Entity. Rules which share
the same template characteristics can be grouped in the same Rule Group. When calling Dynamic Rule
Groups, all Rules belonging to this Rule Group are called and executed. The following example passes
a retrieved Rule ID to the Rule Group PRECON-Minor Precondition. The Rule associated with the ID is
then called.

For more information, see Understanding Rule Groups and Define Rule Groups.

Image: CALL DYNAMIC RULE GROUP Statement page

This example illustrates the fields and controls on the CALL DYNAMIC RULE GROUP Statement page.
You can find definitions for the fields and controls later on this page.

These are the Call Statement-Specific fields:

Rule Category Select a valid Rule Category from which to retrieve the Rule
Group you want to use. The Rule Category available must
be one of the valid categories on the Rule Group Category
Definition page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 95

Rule Group Name Click the Search icon to the right of the Rule Name to open the
Rule Group Search page and select a Rule Group.

Click the Go To icon to the right of the Rule Group Name
to open a new page that displays information on Rule Group
Definition, Categories, and Cross Reference.

Inputs Select an Argument and Type for each Object. This is required
so that all Input can be passed from the Calling Rule to the
Called Function. The arguments are the Input Variables that
have been defined in the Called Function. The Dynamic Rule
Variable is always the first required Input parameter when
calling Dynamic Rule Groups. The Operator field is restricted to
only show the Equals to operator. The Type is restricted to the
Type that is assigned to the Argument.

Outputs Select a Type and Object for each Output. The Return represents
the Variable(s) that has been defined as Output Variable in
the called Function. The Type is restricted to the Type that is
assigned to the Argument.

ADD TO LIST Statements
Use this statement add values to a List.

The List to which you want add Variables must have been created before using this statement. ADD TO
LIST statements can also be used in the context of a FOR EACH loop; however, when using ADD TO
LIST, you cannot add to the same List that you are scrolling through within the context of a FOR EACH
loop.

Image: Define ADD TO LIST Statement page

This example illustrates the fields and controls on the Define ADD TO LIST Statement page. You can
find definitions for the fields and controls later on this page.

Working with the Rules Engine Chapter _

96 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Click the Search icon to the right of the List field to open the Add/Select a Variable page:

Image: Example of Add/Select a Variable page with only List Variables

This example illustrates the fields and controls on the Example of Add/Select a Variable page with only
List Variables. You can find definitions for the fields and controls later on this page.

After having selected the List, you are returned to the ADD TO LIST statement page to add relevant
Variables to the list:

Image: Example of ADD TO LIST statement page with Value to Add to the List Grid

This example illustrates the fields and controls on the Example of ADD TO LIST statement page with
Value to Add to the List Grid. You can find definitions for the fields and controls later on this page.

• If the selected List is a Data Set, you may only add Type Variable to the List, and the Variable must be
a Data Set.

• If the list is not a Data Set, you may add the following to the List:

• A Variable which matches the Type of the List (for example, Text).

• A Data Set Property which matches the Type of the List.

• A Property which matches the Type of the List.

• A user–defined value of Type Text .

For example, a curriculum requirement dictates that students may only fail three courses in subject area
“Economics”. A Rule is needed to capture a List which contains both the Course as well as the failed
Mark. For this, use a Data Set for the purpose of capturing the failed courses in subject area Economics.
At the time of creation, the List is empty. Associate the List Variable with the created Data set. In the

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 97

same Rule, also add a simple List containing all Courses. In a FOR EACH loop which scrolls through
all the Courses in a program of study, evaluate the subject area for each course, determine whether the
course is failed and, if meeting the criteria, add the Course ID as well as the Mark to the Data Set list. Use
a ADD TO LIST to add Course ID’s and Marks as they are found.

LENGTH OF LIST Statement
Use this statement to determine the length of any List.

Click the Search icon to the right of the List field to open the Add/Select a Variable page.

Enter a Number Variable in the Length filed or create a Numeric Variable on the fly to designate the
Length of the List.

SORT LIST Statements
Use the SORT LIST statement to sort a List by any List value. Depending of the type of List you select,
you are presented different options upon returning to the Define statement page.

For Lists that are not Data Sets, select a Sort Order of Ascending or Descending.

Image: Example of a Sort Order Specification that is not a Data Set

This example illustrates the fields and controls on the Example of a Sort Order Specification that is not a
Data Set. You can find definitions for the fields and controls later on this page.

For Lists that are Data Sets, select the Search icon to the right of the Object to open theData Set Property
Search page and select a Data Set. Upon return to the Define SORT LIST statement page, select a Sort
Order of Ascending or Descending for selected Data Set.

Image: Example of a Sort Order Specification that is a Data Set

This example illustrates the fields and controls on the Example of a Sort Order Specification that is a Data
Set. You can find definitions for the fields and controls later on this page.

CLEAR LIST Statements
Use this statement to clear a list and remove all list data.

Click the Search icon to the right of the List field to open the Add/Select a Variable page and select a List.

Working with the Rules Engine Chapter _

98 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

WRITE TO LOG Statements
Write to Log functionality can be used to provide Rule users with useful processing feedback when Rules
are run in batch. For example, a log file can show information such as numbers of rows processed or
retrieved.

The Logging Level Write to Log must be set for a log file to be created. Subsequently, the a Write to Log
statement can be used to write text strings as well as the contents of Variables, Data Set Properties, and
Entity Properties to a log file.

Image: Define Write to Log Statement page

This example illustrates the fields and controls on the Define Write To Log Statement page. You can find
definitions for the fields and controls later on this page.

Display the Contents of All Variables Select this option to write all Rule Variable and their contents to
the log file.

Use the Write to Log Statement Definition grid to add one or more values to be written to the log file. The
Order number is automatically augmented when rows are added. Rows are written to the log file in the
same order.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 99

Type Select a Value Type to include in the log:

• Data Set — The contents of the complete Data Set are
written to the log file. This includes the Data Set Property
Name followed by the Data Set Property Content. This
option is available if the Rule references a Data Set

• DS Prop (data set property) — The value of the selected
Data Set Property. This option is available if the Rule
references a Data Set Variable.

• Property — The contents of the Entity Property are written
to the log file.

• Text — Text entered by the user.

• Variable — Only Variables of type Text can be written to
the log file. If you need the write the contents of a number
Variable to a log, use the function NumberToString to
convert your value first.

Activating and Moving Statements within a Rule
Once Statements are added to a Rule, they can be activated or inactivated, and they can be moved within
the Rule to alter the Rule logic.

Activating and Inactivating Statements
Select the Active check box to the right of each Statement to activate or inactivate the Statement.

An Inactive statement (check box is unchecked) is ignored by the Rules Engine compiler and skipped
when executing a Rule build. Inactivated statement are displayed in non-bold italic text.

Moving Statements within a Rule
One way that Rule logic can be modified is by moving Statements within the Rule. There are two ways
that a Statement can be moved within a Rule:

• Up and Down

Use the Up and Down Toggle fields to move a Statement before or after other Statements, changing
the order in which Statements are executed. The type of Statement and where it is located in relation
to other Statements determines if it can be moved up and/or down.

• By Indentation

Working with the Rules Engine Chapter _

100 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Use the Indentation Toggle fields to move a Statement within or outside of other Statements, changing
when a Statement is executed in relation to Statements above or below it.

Image: Example Showing Statements with Indentations and Up and Down Toggles

This example illustrates the fields and controls on the Example Showing Statements with Indentations and
Up and Down Toggles. You can find definitions for the fields and controls later on this page.

For an example of incorrectly indented Statements, see Applying Rule Concepts and Adding Statements to
a Rule, Add a CALL Statement to Determine Academic Progression.

Applying Rule Concepts and Adding Statements to a Rule
In this section, an example Rule illustrates how Rule Options, Variables, Criteria, and Statements are used
together. Previous sections of the documentation describe creating Variables, using Criteria to define a
data set, and the features of delivered Statements for Rule evaluation and calculation.

The objective of this example Rule is to evaluate whether a student has obtained enough credits to be able
to progress to the next phase of an academic program after having completed Year 1. To start, the Rule
accesses the courses for the program of study for Year 1 and sums the credits for the courses the student

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 101

has passed. In order to insure an accurate TotalCredit value, the Rule sets the TotalCredit Variable to zero
prior to passing the sum result into a Variable, TotalCredit.

Image: Example of Define Rule page for Progression Rule

This example illustrates the fields and controls on the Example of Define Rule page for Progression Rule.
You can find definitions for the fields and controls later on this page.

Add an ASSIGN Statement to Set the TotalCredit Field to Zero
With Rule Options, Variables, and Criteria defined, begin by adding an ASSIGN statement that selects the
Variable TotalCredit and set it equal to the Number 0 (zero):

Image: Example of Assignment Statement Definition

This example illustrates the fields and controls on the Example of Assignment Statement Definition. You
can find definitions for the fields and controls later on this page.

Upon saving, the ASSIGN statement is added to the Evaluations and Calculations grid of the Define Rule
page with the Rule text automatically generated using the text color setup:

Image: Example of ASSIGN Rule Text

This example illustrates the fields and controls on the Example of ASSIGN Rule Text. You can find
definitions for the fields and controls later on this page.

For more information about ASSIGN statements, see “Understanding Statement-Specific Attributes,
ASSIGN Statements.”

Add a FOR EACH Statement to Select All Courses
The next step is to retrieve all courses for the academic program of study which is associated with the
Academic Progress tracker through the APT header. You need to retrieve the correct APT Program

Working with the Rules Engine Chapter _

102 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

of Study before selecting all associated courses. Select the APT program of study using a FOR-Each
statement.

Image: Example of FOR EACH Statement Definition

This example illustrates the fields and controls on the Example of FOR EACH Statement Definition. You
can find definitions for the fields and controls later on this page.

Select Entity Processing to activate the Entity Name field and prompt. Select the Search icon and choose
the APT Course Entity. By selecting APT Course, you can retrieve all courses that are part of the APT
instance selected as Base Entity. Do not select Process Immediate Children Only so the Rule selects
Courses wherever they exist in the structure and not just the immediate children of the APT Program of
Study.

Upon saving, the FOR EACH statement is added to the Evaluations and Calculations grid of the Define
Rule page with the Rule text automatically generated using the text color setup:

Image: Example of FOR EACH Rule Text

This example illustrates the fields and controls on the Example of FOR EACH Rule Text. You can find
definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 103

Add a FOR EACH Statement to Select a Result for Each Course
Next, you add another FOR EACH Statement to Select APT Results for each Course. This statement is
indented under the FOR EACH APT Course Statement so that it is executed for each to retrieve the APT
Result for each APT Course.

Image: Example of Indented FOR EACH APT Result Rule Text

This example illustrates the fields and controls on the Example of Indented FOR EACH APT Result Rule
Text. You can find definitions for the fields and controls later on this page.

Note: The Rules Engine Manager has logic which validates FOR EACH statements upon saving the
Rule. A FOR EACH statement cannot be added to a Rule that is invalid, but it is possible to invalidate an
existing FOR EACH statement by removing a statement from the Evaluations and Calculations grid or by
deactivating a line on the Evaluations and Calculations grid. This would make the overall Rule invalid.
For example, if an APT Attempt row is removed from the Evaluations and Calculations grid or moved to
a new position after having been added, the overall Rule becomes invalid.
The APT Result can only exist in the rule as a child to APT Course and not as a child to APT attempt.
This allowed while the Rule is being built because the action may have been done in the course of
correcting the rule. However, when the rule is saved, the whole Rule is validated and appropriate warning
messages are displayed. If a nested FOR EACH statement is used in combination with a CREATE
ENTITY statement, the same logic applies.

Working with the Rules Engine Chapter _

104 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Add an IF Statement
Next add an IF statement to make sure that we select the correct result before we add it to our total credit
count. Do this by restricting the APT Results by Result Type and whether the Result is included in the
Calculation:

Image: Example of Define IF Statement Definition

This example illustrates the fields and controls on the Example of Define IF Statement Definition. You
can find definitions for the fields and controls later on this page.

Add a CALL Statement to Sum Credits
After adding specified criteria for selecting results, use a CALL statement to call a Function to sum the
retrieved credits. In the Define CALL Statement page, pre-delivered Functions are available that are
restricted to those which are available in the Rule Categories, including common math functions.

When calling a Function, the required parameters are automatically displayed and the available parameter
values are restricted to those that can retrieved for the Rule. For example, when selecting Rule Category
Math and Rule Name Add, the Input and Output parameters are displayed. The selection of variables and

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 105

properties and variables are restricted to show the correct property and variable types. In this case only
numeric variables and properties can be selected:

Image: Example of Define CALL Statement

This example illustrates the fields and controls on the Example of Define CALL Statement. You can find
definitions for the fields and controls later on this page.

When calling a Function, the Function itself indicates which Input and Output parameters are required.
Only the valid Property and Variable Types are shown. In this case, only numeric Variables and Properties
can be selected:

Image: Example of CALL Statement Inputs and Outputs

This example illustrates the fields and controls on the Example of CALL Statement Inputs and Outputs.
You can find definitions for the fields and controls later on this page.

Upon saving, the CALL statement is added to the Evaluations and Calculations grid of the Define Rule
page with the Rule text automatically generated using the text color setup:

Image: Example of CALL Statement Rule Text

This example illustrates the fields and controls on the Example of CALL Statement Rule Text. You can
find definitions for the fields and controls later on this page.

Working with the Rules Engine Chapter _

106 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Add a CALL Statement to Determine Academic Progression
After calculating a student's total credits, you can use that result to evaluate whether the student may
progress to Year 2 of his program of study. Assuming that multiple programs of study use the same
credit requirement for academic progression, you can create a Rule of type Function that can be used by
multiple academic progression Rules:

Image: Example of Academic Progression Function (1 of 2)

This example illustrates the fields and controls on the Example of Academic Progression Function (1 of
2). You can find definitions for the fields and controls later on this page.

Image: Example of Academic Progression Function (2 of 2)

This example illustrates the fields and controls on the Example of Academic Progression Function (2 of
2). You can find definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 107

This Function can be called from the main Rule by adding a row to the Evaluations and Calculations grid
and using the CALL statement. The Parameters from the Rule are automatically offered as Input and
Output parameters on the Define Call Statement page:

Image: Example of Academic Progression Function Input and Output

This example illustrates the fields and controls on the Example of Academic Progression Function Input
and Output. You can find definitions for the fields and controls later on this page.

Upon saving, the academic progress CALL Function is added to the Evaluations and Calculations grid of
the Define Rule page with the Rule text automatically generated using the text color setup. However, its
placement would result in its being executed at the wrong time:

Image: Example of Academic Progression Rule Text with Progression Function Incorrectly
Indented

This example illustrates the fields and controls on the Example of Academic Progression Rule Text with
Progression Function Incorrectly Indented. You can find definitions for the fields and controls later on this
page.

With the CALL Function in the current position, the evaluation takes place for each result selected as
follows:

• Fetch of Course A

• Retrieval of Result for Course A

• — Add retrieved result for Course A to TotalCredit

• — Call Function Credit progression Year 1

• Fetch of Course B

• Retrieval of Result for Course A

• — Add retrieved result for Course B to TotalCredit

• — Call Function Credit progression Year 1

The evaluation of academic progression takes place each time a result is retrieved. This is not what you
want the Rule to do. What you want is for the academic progression evaluation to take place after all the
course credit have been added up:

• Fetch of Course A

• Retrieval of Result for Course A

Working with the Rules Engine Chapter _

108 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• — Add retrieved result for Course A to TotalCredit

• Fetch of Course B

• Retrieval of Result for Course A

• — Add retrieved result for Course B to TotalCredit

• Call Function Credit progression Year 1

Use the remove indentation field to place the statement in the correct place:

Image: Example of Academic Progression Rule Text with Progression Function Correctly Indented

This example illustrates the fields and controls on the Example of Academic Progression Rule Text with
Progression Function Correctly Indented. You can find definitions for the fields and controls later on this
page.

Understanding Contextual Referencing
The Rules Engine includes a feature called Contextual Reference. This feature ensures that when
Functions are called by other Rules (Calling Rules), the Entity of the Calling Rule is passed to the called
Function.

The following is an example of a Rule using Contextual Referencing which does the following:

1. Selects all relevant Courses.

2. For each Course, determines whether en enrollment record exists in Year 1 of the academic program
according to the APT schedule record using user defined Function.

3. Selects the appropriate result which is stored in the result record as Result Type “ECTS”.

4. Uses the result value obtained in the previous step to calculate the sum of credit using delivered math
Function “Add” in Category “Math”.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 109

5. Evaluates whether total credit is enough to progress to year 2 of the academic program using user
defined Function.

Image: Example of Progression Rule for Contextual Reference Example (1 of 2)

This example illustrates the fields and controls on the Example of Progression Rule for Contextual
Reference Example (1 of 2). You can find definitions for the fields and controls later on this page.

Image: Progression Rule for Contextual Reference Example (2 of 2)

This example illustrates the fields and controls on the Progression Rule for Contextual Reference
Example (2 of 2). You can find definitions for the fields and controls later on this page.

The Functions used to perform summing of Total Credit (Steps 4 and 5) receive either an Input value of
type Variable or Property directly from the Calling Rule. An input Variable is all that these Functions need
to execute the required processing logic. The Function performs a series of evaluative Statements using
the single input Variable TotalCredit and passes back the result into Variable Progressionoutcome. The
Function has no Entity of its own and is without criteria.

Working with the Rules Engine Chapter _

110 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Shown below is an example of the custom Function “NLD Function Credit Progression Year 1”.

Image: Example of Progression Function for Contextual Reference (1 of 2)

This example illustrates the fields and controls on the Example of Progression Function for Contextual
Reference (1 of 2). You can find definitions for the fields and controls later on this page.

Image: Example of Progression Function for Contextual Reference (2 of 2)

This example illustrates the fields and controls on the Example of Progression Function for Contextual
Reference (2 of 2). You can find definitions for the fields and controls later on this page.

Next is an example of the Function “Schedule Check, Check specific Year of Program against the
Attempt”. This Function does have its own Base Entity “APT Attempt”, but only Input and Output

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 111

parameters are defined in the Call Statement shown after the Function example. The criteria identifying
the exact APT Attempt are not explicitly passed from the Calling Rule to the Called Function.

However, when the Function is called, the exact Attempt information is passed from the calling Rule to
the called Function by virtue of Contextual Reference. This is because the called Function's Base Entity is

Working with the Rules Engine Chapter _

112 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

APT Attempt which is the same context that the Calling Rule is working from when retrieving Attempts
using the FOR-EACH loop.

Image: Example of Program Course Function for Contextual Reference

This example illustrates the fields and controls on the Example of Program Course Function for
Contextual Reference. You can find definitions for the fields and controls later on this page.

Image: Example of Call Statement for Contextual Reference

This example illustrates the fields and controls on the Example of Call Statement for Contextual
Reference. You can find definitions for the fields and controls later on this page.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 113

Building and Testing Rules

This section discusses how to:

• Build Rules.

• Test Rules.

• Create a new version of a Rule.

• View the Page Process Flow.

• View Rule Cross-references.

Pages for Building and Testing Rules
Page Name Definition Name Navigation Usage

Rule Builder SCC_RULE_BUILDER Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
Search for a Rule, Define
Rule, select an Action of
Build Rule.

Select Rules to build.

Build Rules SCC_RULE_REBUILD Set up SACR, System
Administration, Rules Engine,
Setup, Build Rules

Search for Rules to build.

Rules Engine Tester SCC_RULE_REBUILD Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
Search for a Rule, Define
Rule, select an Action of Test
Rule.

Test a Rule.

Rules Engine Manager
Version History

SCC_RULE_VERSION Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
Search for a Rule, Version
History tab.

View and manage Version
History for a Rule.

Rules Engine Manager Cross
Reference

SCC_RULE_XREF Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
Search for a Rule, Cross
Reference tab.

View the other Rules where
this Rule is used.

Rules Engine Tester SCC_RULE_REBUILD Set up SACR, System
Administration, Rules Engine,
Rules Engine Manager, select
Search for a Rule, Define
Rule, select an Action of Test
Rule.

Test a Rule.

Working with the Rules Engine Chapter _

114 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Building Rules
Before a Rule can be tested or used, the code in the Rule needs be converted to executable code. This is
done by the Rules Engine Build code compilation process. This process can be initiated:

• From an individual Rule using the Rule Action Build on the Define Rule page.

• In batch using the Build Rules process, where you can build multiple Rules simultaneously.

Building a Rule from the Define Rule Page
Access the Define Rule page (Set up SACR, System Administration, Rules Engine, Rules Engine
Manager, select Search for a Rule, Define Rule).

Select the Update Status Information Action to display the current Rule Build Status.

Then, select the Build Action to open the Rule Builder page, select the Rule, and click the Build button to
compile the Rule:

Image: Rule Builder Page

This example illustrates the fields and controls on the Rule Builder Page. You can find definitions for the
fields and controls later on this page.

If the Rule Build Status is updated to Build Successful, you may proceed to testing the Rule. Otherwise,
consult your Rule for Current Logic. A flaw in Rule Logic may be the issue.

Building Multiple Rules at the Same Time
Access the Build Rules page (Set up SACR, System Administration, Rules Engine, Setup, Build Rules).

Select any search parameter fields you want to use to search for Rules you want to build and click the
Search button. If you click the Search button without making any parameter selection, all Rules are
returned.

Select the Rules you want to build and click the Build button.

Testing Rules
After a Rule is built successfully, you can test the Rule.

Access the Define Rule page (Set up SACR, System Administration, Rules Engine, Rules Engine
Manager, select Search for a Rule, Define Rule).

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 115

Select the Test Rule Action to open the Rules Engine Tester page:

Image: Rules Engine Tester page

This example illustrates the fields and controls on the Rules Engine Tester page. You can find definitions
for the fields and controls later on this page.

Image: Rules Engine Tester page (Inputs and Outputs)

This example illustrates the fields and controls on the Rules Engine Tester page (Inputs and Outputs). You
can find definitions for the fields and controls later on this page.

Working with the Rules Engine Chapter _

116 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Image: Example of Rules Engine Tester List Output

This example illustrates the fields and controls on the Example of Rules Engine Tester List Output. You
can find definitions for the fields and controls later on this page.

Enter the required Arguments that are needed to test the Rule. After test parameters have been added the
Parameters can be saved as a Rule Test Profile.

Test Data Profile Select a saved Test Data Profile.

Delete Click this button to delete a stored Test Data Profile.

Update Click this button to update a stored Test Data Profile with new
parameters.

Add a New Test Data Profile and Add Enter a name if you want to save a new Test Data Profile and
click the Add button.

A Test Data Profile can be added after the Rule has been
executed using the listed parameters

Inputs Displays all Parameters/Variables which have been listed as
Input.

Note: The text Click Search for input list appears next to List
Input Variables. Click the Search icon to provide input.

Arguments Enter the required Arguments needed to test the Rule.

Execute Test Select this button to execute the Rule. If a Rule needs
parameters and none are provided, the Rule cannot be executed.

Outputs Displays all output Parameters/Variables with the output result
when the Rule executes successfully.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 117

Note: The text Click details for output list appears in the Output
grid for List Variables only. Click on the Details icon to view
List Variable output on a secondary page.

Debug Log Information Displays debug information is shown if the Logging Level is set
on the Define Rule page. The Debug Log Information shows the
execution logic of the Rule in order of execution.

Refer to the “Starting Query” for information about how the
Base Entity is selected and with which criteria the selection is
done. If this is a Rule, a Select statement is generated based on
the underlying tables associated with the Base Entity attached to
the Rule. The Criteria attached to the Rule is used to create the
Starting Query's Criteria.

Refer to the individual debug statements to view what
information was selected per statement. The timestamp option
shows the elapsed time.

Return Select this button to return to the Rules Engine Manager page.

XML Dumps of the Entity, before and after Rule execution, are also displayed:

Image: Example of XML Dump in Rule Tester

This example illustrates the fields and controls on the Example of XML Dump in Rule Tester. You can
find definitions for the fields and controls later on this page.

XML Dump of the Entity Before
Execution

Displays all data selected for the Base Entity and made available
to the Rule.

XML Dump of the Entity after
Execution

Displays all current data for the Base Entity after the Rule is
executed. This information is relevant in instances where the
Rule is used to update or insert data in the database.

Creating a New Version of a Rule
Active Rules can be referenced by other Rules or by online triggers and/or batch processes. In a
production environment, it should not be possible to change anything in an active Rule. Changing an
Active Rule can be disruptive to business processes. Therefore, Rule changes should be made by creating
a new version of an Active Rule. Only one Active version of a Rule exists for any Rule at any given time.
Since Rules are referenced by other systems using the Rule ID, it is always the Active version of the
Rule that is executed. Use the Create new Version of Rule Action on the Define Rule page to create a new
version of an Active Rule.

Working with the Rules Engine Chapter _

118 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

After the option Create new version of Rule has been selected the user is shown a warning message:

Image: Example of Create New Rule Warning Message

This example illustrates the fields and controls on the Example of Create New Rule Warning Message.
You can find definitions for the fields and controls later on this page.

After clicking OK on the warning message, the Version History page opens:

Image: Version History page

This example illustrates the fields and controls on the Version History page. You can find definitions for
the fields and controls later on this page.

Note: You may also access the Version History by navigating to Set up SACR, System Administration,
Rules Engine, Rules Engine Manage, Version History.

Older versions of the Rule are shown as Version History. Any Version Codes and Comments are displayed
by Version. You can still ignore the new Rule Version created by cancelling out of the page without
saving.

After saving the Rule Version, an Operator ID and Date Time stamp are automatically updated, and the
status of the new Version is In Progress. In the example illustrated above, . Version 2 remains Active until
Version 3 is activated. When activating Version 3, Version 2 becomes Inactive automatically.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 119

Note: It is not possible to reactivate “old” versions of Rules.

Viewing Rule Cross References
Access Rules Engine Manager Cross Reference page (Set up SACR, System Administration, Rules
Engine, Rules Engine Manager, Cross Reference).

Image: Cross Reference page

This example illustrates the fields and controls on the Cross Reference page. You can find definitions for
the fields and controls later on this page.

A Rule Cross Reference page is available which shows all Rules which are referencing the current Rule
via a call statement. Click the link to navigate directly to the referenced Rule. If there no other Rules
reference the current Rule, a message is displayed: “This Rule is not used by another Rule.”

Running Rules in Batch

Active Rules can be run in batch. Run Rules as a one off process or scheduled them to run at regular
intervals.

Page Used for Running Rules in Batch
Page Name Definition Name Navigation Usage

Process Rules in Batch SCC_RULE_RC_BAT Set Up SACR, System
Administration, Rules Engine,
Batch Processes, Run Rules
in Batch

Use this page to run Active
Rules in batch.

Working with the Rules Engine Chapter _

120 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Running Rules in Batch
Access the Run Rules in Batch page (Set Up SACR, System Administration, Rules Engine, Batch
Processes, Run Rules in Batch).

Image: Process Rules in Batch page

This example illustrates the fields and controls on the Process Rules in Batch page. You can find
definitions for the fields and controls later on this page.

Rule Category Name Select a Rule Category. The Rule Category search is restricted
to those for which you are authorized.

Rule Name Select a Rule.

Available Rules are filtered using the following criteria:

• Rule Usage is Rule.

• Rule Status is Active.

• Available to be Used is True (selected).

Version Displays the version of the selected rule

Description Displays the Description of the Rule, if any.

Entity Name Displays the Base Entity of the Rule, if any.

Rule Group Name Displays the Rule Group Name of the Rule, if any.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 121

Variables
After selecting a Rule Name, the required variables are displayed in a grid. You must provide an Object
input value for each required Variables before running or scheduling a Rule. If LOV prompting has been
added to a Variable, the same LOV prompting functionality can be used to provide an Object input for the
Variable.

Batch Process Logging
The Rules Engine Batch process generates log files for the Rule and any called Rules or Functions if the
Rules and or called Functions have been built using one of these Rules Engine logging levels:

• Informational Messages

• Trace Logging

• Error Messages

• Warning Messages

With Trace Logging, three files are generated:

• RuleDebugFile – A log file with a transcript of Call Statements, Variable Maps and Contents, and
Statements.

• RuleEntityPostExecution – An XML file containing a dump of the Entity structure prior to
processing.

• RuleEntityPreExecution – An XML file containing a dump of the Entity structure after processing.
Any updates and or inserts into the system are logged in the XML file.

Integrating User Interfaces with the Rules Engine

In addition to the system-delivered interfaces with the Rules Engine (Rules Engine Tester, Rules Engine
Batch Processing, and selected user interfaces in Program Enrollment, Activity Management, Research
Tracking, and Evaluation Management System), you can create custom integrations to the Rules Engine
for user interfaces throughout Campus Solutions.

In this topic, we are illustrating the creation of a custom interface to the Rules Engine to meet the
following business requirement:

Provide a button on component Records and Enrollment > Student Term Information > Term History >
Student Special GPA that calculates a Special Grade Point Average based on courses from a student’s
major and displays the result on the page.

The steps to meet this requirement are:

1. Build and test a Functional Rule.

2. Generate a Trigger to call the Functional Rule.

3. Generate boilerplate code.

Working with the Rules Engine Chapter _

122 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

4. Attach the generated code to the component event.

Building and Testing a Functional Rule
The first step is to build and the test a Functional Rule to integrate with Student Special GPA page; in this
example, a Rule that calculates a Special Grade Point Average based on a student’s Academic Program,
Academic Plan, or Academic Sub-Plan. Using the functional business requirement as a starting point, start
by looking at how to retrieve the needed data.

Data and Entity Considerations
To determine how to retrieve the data, decide which role to use to build the Rule: Functional Expert
Role or Developer Role. This example uses the Functional Expert Role instead of the Developer Role to
create an Expert Rule. This assumes that Functional Experts want to create similar grade point average
calculation Rules at a later stage and/or adjust the business logic for the created Rule over time. Rules
created by a Developer Role are created in Application Package PeopleCode by developers. So, while
Functional Experts are able to use such Rules, they have no means to adjust their business logic. By
creating an Expert Rule, Functional Experts are able to clone or adjust the Rule.

Since this is an Expert Rule, an Entity is required to be in place for this data. For this example, system-
delivered Entities are used, but new Entities can be created if needed. For information on creating
Entities, see Creating a New Entity.

In this example, the Student Grade Inquiry page (Records and Enrollment > Student Term Information >
Student Grades) is based on the record view CLASS_TBL_SE_VW, which contains all the information
needed for this Rule. Since record tables are not being updated with this Rule, a record view is suitable.

Image: Student Special GPA page before Customization for Rule Engine User Interface Example

This example illustrates the Student Special GPA page before a custom integration with the Rules Engine.

Navigate to the Entity Registry (Set Up SACR, System Administration, Entity , Entity Registry)
to find that there is an existing matching Entity, Student Enrollment – Read Only, for record
view CLASS_TBL_SE_VW. For this Entity, Entity Type is set to Read Only for Prod Record
CLASS_TBL_SE_VW. The Read Only Entity Type does not allow an update or save to be executed by the
Rules Engine. The Entity Status is set to Active. No AppClass (application class) is needed for Read Only

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 123

Entities. The AppClass is reserved for Application Class PeopleCode which controls the save Validation
logic for the Entity. Use the Action drop down and select View Hierarchy to view the Entity structure and
its properties.

Image: Entity Registry page for Student Enrollment - Read Only for Rules Engine User Interface
Example

This example illustrates the Entity Registry page for the Student Enrollment – Read Only Entity.

Although this Rule is not updating CLASS_TB_SE_VW, it does access and update the calculated Special
GPA. The production record for Special GPA is STDNT_SPCL_GPA.

Navigate to the Entity Registry (Set Up SACR, System Administration, Entity , Entity Registry)
to find that there is an existing matching Entity, Student Special GPA, for production record
STDNT_SPCL_GPA. For this Entity, Entity Type is set to Unvalidated Entity for Prod Record
STDNT_SPCL_GPA. The Unvalidated Entity Type allows data to be inserted and updated with no
validation. The Entity Status is set to Active. No AppClass (application class) is needed for Unvalidated
Entities. The AppClass is reserved for Application Class PeopleCode which controls the save Validation

Working with the Rules Engine Chapter _

124 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

logic for the Entity. Use the Action drop down and select View Hierarchy to view the Entity structure and
its properties.

Image: Entity Registry page for Student Special GPA for Rules Engine User Interface Example

This example illustrates the Entity Registry page for the Student Special GPA Entity.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 125

If you want to limit access to only certain properties of any Entity that you are using, you can do so
by creating an Entity View. Do this by selecting Entity View from the Action drop down on the Entity
Registry page.

Image: Entity View Editing page for the Student Enrollment Partial View of the Student
Enrollment – Read Only Entity for Rules Engine Interface Example

This example illustrates the Entity View Editing page for the Student Enrollment Partial View of the
Student Enrollment – Read Only Entity.

Provide the Entity View with a name and deselect the property options as required:

• Viewable – The property can be viewed by not changed.

• Editable – The property is changed when saved.

Working with the Rules Engine Chapter _

126 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Note: When a new Entity is created from a production record and saved, the Entity Registry is
automatically updated. The record fields become available as Entity Properties and existing Yes/No,
translate value, and prompt table validations on the RECORD.FIELD definition are made available for
prompting without specifically defining a LOV. .

Providing Entity Security Access
Before an Entity can be used in the Rules Engine, you must create the appropriate security setup. This is
done using the Entity Profile and Define Rule Category setups.

The Entity Profile controls how the Entity can be accessed by selection of a Profile Type. In this example,
Rules Engine. The Entity Profile also controls whether the Rule is allowed to use the Entity Structure as
a starting point for data access in the Rule. This is controlled by the selecting Base Entity for each Entity
Name in the Entity Profile to which you want to have access.

Image: Entity Profile page for Student Car Term Information for Rules Engine User Interface
Example

This example illustrates the Entity Profile page for Student Car Term Information for the Rules Engine
User Interface Example.

The next part of Entity Security is setup using Rule Category Definition. Here, you can:

• Create a Category in which to create the Functional Rule. In this example, we want all Student Car
Term related Rules created in one Rule Category.

• Grant access to the Entity Profile Student Car Term Information.

• Control access to types of Rules. we want to create Functions, Rules and Triggers.

• Control which from Valid Rule Categories business logic can be accessed. We are creating a Rule
that uses business logic from other Rule Categories; for example, to perform calculations (category
Math) .

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 127

• Control who can create Rules for Student Car Term Information; this may be one or more specified
users or all users in associated Role.

Image: Define Categories page for Rules Engine User Interface Integration Example

This example illustrates the Define Categories page for Rules Engine User Interface Integration Example.

Build and Test the Functional Rule
With Entity security in place, t the Functional Rule to calculate the Special GPA for our business case can
be created and tested.

Working with the Rules Engine Chapter _

128 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access the Define Rule page (Set Up SACR, System Administration, Rules Engine, Rules Engine
Manager, Add a New Rule).

Image: Define Rule page for Functional Rule for Rules Engine User Interface Example

This example illustrates the Define Rule page for Functional Rule for Rules Engine User Interface
Example

This Functional Rule uses the Student Enrollment – Read Only Entity, created from production record
CLASS_TBL_SE_VW. Assumed is the selection of data using the following Criteria:

• EmplID

• Academic Career

• Institution

• Term

• Subject

Using these Criteria, the Rule returns all Psychology class results for the specified Student ID, Academic
Career, Institution and those Academic Terms which are less than or equal to the specified Term. The

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 129

Criteria need to be passed into this Rule. The needed Values are obtained from Variables designated as
required input:

Image: Variables and Criteria for Define Rule Page for Functional Rule for Rules Engine User
Interface Example

This example illustrates the Variables and Criteria for Define Rule Page for Functional Rule for Rules
Engine User Interface Example.

Test the Rule (select Test Rule from the Action drop down on the Define Rule page) to ensure it is
producing the desired results before proceeding with the next step of generating a Trigger to call the Rule.

Create a Trigger to Call the Functional Rule

Note: This example describes the creation of a Functional Rule and a separate Trigger Rule. However, the
separation of business logic and user interface integration, although beneficial, is not strictly necessary.
You may create one Rule that performs both functions.

The Trigger is the connection between the user interface and the Functional Rule. The Trigger calls
the Functional Rule and passes the information from the user interface to the Functional Rule. Using a
Trigger Rule allows you to separate the functional business logic (in this case the GPA calculation) from
the logic which dictates when and how that Functional Rule is called. Over time, the Functional Rule may
change due to changes in the business case whereas the Trigger Rule controls the interaction with the user
interface and the how and when of calling the Functional Rule.

In this example, the Trigger must pass the specified input values (EmplID, Academic Career, Institution,
Term, and Subject area) from the user interface to the Functional Rule to successfully select Grade
Points and Units from the Student Enrollment Entity and calculate the GPA. A Component Event using
PeopleCode (in this example, clicking a button) calls the Trigger which then calls the Functional Rule.
This is discussed further in Generate Boilerplate Code.

There are two approaches to creating a Trigger in this example:

Working with the Rules Engine Chapter _

130 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Method A: Pass the needed Variables to the Functional Rule by retrieving and passing the Entity to
the Rule.

Considerations for Using Method A

• The Rule Usage is Function or Trigger and has a Base Entity. A Function or Trigger does not have
criteria. This means that for this Function to work with the Base Entity attached, it needs Entity
information obtained by the calling Rule or the Component Event PeopleCode which calls the
Trigger or Function.

• There is a need to act upon multiple sections of a flexible Entity Structure (for example Entities
for Program Enrollment) or Entity Tree.

• You do not want to lock-down the Input Variables for the Trigger or Function as the data needed
may change over time.

• The execution of the Rule depends on the data in the component, which may not be the same as
the data saved in the database. Any changes in the Rule update the component from which the
data is retrieved and does not save the data to the database directly.

• Method B: Pass the needed Variables to the Functional Rule using Variables taking their values from
the user interface.

Considerations for Using Method B

• The Rule Usage is Trigger so the component needs to pass input Variables to a called Rule.

• The Trigger Rule should not have a base entity defined.

• The Input Variables are not expected to change over time.

• Any data needed by the rules and not passed in using input Variables must be retrieved in a rule
called from the trigger rule as the base entity defined by the criteria of a rule.

• If the Rule changes values in the component, the data must be returned to the component as output
Variables.

Creating a Trigger Using Method A: Passing an Entity using an Entity
In Method A, the Trigger is defined to work with the Student Special GPA Entity as a Base Entity. The
production record for this Base Entity, STDNT_SPCL_GPA, is available on the user interface from

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 131

which the Trigger is called. The needed information from the Entity can be passed directly to the Trigger.
Although the Trigger has no Criteria, the correct Entity is provided to the Trigger.

Image: Define Rule page for Creating Method A Trigger for Rules Engine User Interface
Integration Example

This example illustrates the Define Rule page for Creating Method A Trigger for Rules Engine User
Interface Integration Example.

Working with the Rules Engine Chapter _

132 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

This Trigger updates the Student Special GPA Entity with the calculated GPA. This update is displayed on
the Special GPA page. This is the Define Call Statement to the GPA Calculation Rule:

Image: Define Call Statement page for Creating Method A Trigger for Rules Engine User Interface
Integration Example

This example illustrates the Define Call Statement page for Creating Method A Trigger for Rules Engine
User Interface Integration Example

From the call to the Functional GPA rule, it is apparent that the input values needed are passed in using
Entity Properties from Student Special GPA Entity.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 133

Creating a Trigger Using Method B: Passing Parameters
In Method B, the Trigger is defined to receive all input values as Variables from the user interface. There
is no Base Entity as it is not needed to provide the called GPA Functional Rule with the values it needs.

Image: Define Rule page for Creating Method B Trigger for Rules Engine User Interface
Integration Example

This example illustrates the Define Rule page for Creating Method B Trigger for Rules Engine User
Interface Integration Example

Working with the Rules Engine Chapter _

134 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The calculated GPA is passed into a GPA output Variable. The calling PeopleCode event takes this value
and updates the GPA on the Special GPA page. This is the Define Call Statement to the GPA Calculation
Rule:

Image: Define Call Statement page for Creating Method B Trigger for Rules Engine User Interface
Integration Example

This example illustrates the Define Call Statement page for Creating Method B Trigger for Rules Engine
User Interface Integration Example.

Generate Boilerplate Code
With a Trigger created, the boilerplate code can be generated and connected it to a Component Event.
In this example, the code calls the Rule to calculate the GPA by clicking a button on the Student Special
GPA page. The example shows two new buttons added: ECA Calc, representing the Method A approach

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 135

to the Trigger, and Parm Calc, representing the Method B approach to the Trigger. You would likely only
use one approach in the customization of your system and would, therefore, only have one button.

Image: Student Special GPA page after Customization for Rule Engine User Interface Example

This example illustrates the Student Special GPA page after Customization for Rule Engine User Interface
Example.

The act of clicking a button is the FieldChange Event to which the PeopleCode should be added to call
the Trigger.

Use the Define Rule Triggers page (Set up SACR > System Administration > Rules Engine > Setup >
Define Rule Triggers) to generate boilerplate code and attach that code to the Component Event. The
setup created here also acts as an administrative reference to Events and associated Rules. You must
minimally specify a PeopleCode Event, a Record, and a Field. The following PeopleCode Events can be
selected:

• FieldChange

• FieldEdit

• SavePostChange

• SavePreChange

You may also add a Component for reference. Once you have the setup, click the Generate Code button
to generate the boilerplate PeopleCode. The Generate Code option uses information from the Trigger to
create a Code example which can be used to call the Trigger from the Component.

Generating Code for the ECA Calc
This example shows a Trigger based on Method A, which contains an Entity and assumes that an Entity is
passed to the Trigger. The calculated GPA is updated directly on the Entity.

Working with the Rules Engine Chapter _

136 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access the Define Rule Triggers page (Set Up SACR, System Administration, Rules Engine, Setup,
Define Rule Triggers).

Image: Define Rule Triggers page for Parm Calc for Rules Engine User Interface Integration
Example

This example illustrates the Define Rule Triggers page for Parm Calc for Rules Engine User Interface
Integration Example.

Here is the example generated code:

* --------------------- About This Example Code -------------------------- */
/* The following Example Code has been created as a starting point from */
/* which to create Rule –UI Integration. In the code you will find that the */
/* rule refers to the Trigger Rule provided on the component as well as its */
/* Arguments. The code below will need to be adjusted before it can be used */
/* to call the (Trigger) Rule. For more information please refer to the */
/* PeopleBooks documentation available for Rules Engine Functionality. */
/* */
/* ---------------- Understanding this Example Code ----------------------- */
/* There are two ways to bring information from a Page or Component into a */
/* Rule: */
/* */
/* Method 1: Providing Arguments from Rowset */
/* Provide Local Strings with Values obtained from the appropriate Component */
/* Rowset. This method may be appropriate when calling a Rule or Function */
/* without an Entity which requires a set of input Arguments (Variables) or */
/* for a Rule with a Base Entity which requires a set of parameters which can */
/* be easily obtained and passed into the Rule. */
/* */
/* Method 2: Providing Entity using EntityComponentAdapter */
/* Use the Entity Component Adapter to obtain Entity values from the */
/* Component. This method should be used when calling a Function with a Base */
/* Entity which needs to work with that Entity information from the UI. */
/* -- */

import SCC_RULES_ENGINE:Util:RuleFactory;
import SCC_RULES_ENGINE:Util:RuleInterface;
import SCC_COMMON:ENTITY:COMPONENT:EntityComponentAdapterAbstract;
import SCC_COMMON:ENTITY:IEntity;

Local RuleFactory &sccRuleFactory = create RuleFactory();
Local RuleInterface &SCC_RTRIG_20140218092909= &sccRuleFactory.getRule("SCC_RULE_ID⇒

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 137

_20140218093117", true);

Local EntityComponentAdapterAbstract &objECA;
Local array of SCC_COMMON:ENTITY:IEntity &arrIEntity;
Local SCC_COMMON:ENTITY:IEntity &objIEntity;
Local row &row;
Local number &i;

/* Make sure you are using the proper Entity Component Adapter implementation for y⇒
our Component */
/* Remove the comment markers below to implement the ECA */

/* &objECA=CreateObject("SCC_COMMON:ENTITY:COMPONENT:ECAErrorGrid"); */

/* If the current row is not the row where the entity exists, replace logic below ⇒
to get the correct row in the component */

&row = getrow();

/* Bind the row of data in the comonent to an entity */
/* Be sure to correctly bind the component to the entities used by the rule */

/* &arrIEntity = CreateArrayRept(&objIEntity, 0); */
/* &arrIEntity.Push(&objECA.BindToUIFromRowWithEntityID(&row, "SCC_ENTITY_201402140⇒
90313")); */
/* &SCC_RTRIG_20140218092909.Context = &arrIEntity; */

/* Execute the Rule */

&SCC_RTRIG_20140218092909.Invoke();

Generate Code for the Parm Calc
This example shows a Trigger based on Method B, which only contains Input Variables. The calculated
GPA is passed back to the Component Event which takes care of updating the GPA value.

Working with the Rules Engine Chapter _

138 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access the Define Rule Triggers page (Set Up SACR, System Administration, Rules Engine, Setup,
Define Rule Triggers).

Image: Define Rule Triggers page for Parm Calc for Rules Engine User Interface Integration
Example

This example illustrates the Define Rule Triggers page for Parm Calc for Rules Engine User Interface
Integration Example.

Here is the example generated code:

/* --------------------- About This Example Code -------------------------- */
/* The following Example Code has been created as a starting point from */
/* which to create Rule –UI Integration. In the code you will find that the */
/* rule refers to the Trigger Rule provided on the component as well as its */
/* Arguments. The code below will need to be adjusted before it can be used */
/* to call the (Trigger) Rule. For more information please refer to the */
/* PeopleBooks documentation available for Rules Engine Functionality. */
/* */
/* ---------------- Understanding this Example Code ----------------------- */
/* There are two ways to bring information from a Page or Component into a */
/* Rule: */
/* */
/* Method 1: Providing Arguments from Rowset */
/* Provide Local Strings with Values obtained from the appropriate Component */
/* Rowset. This method may be appropriate when calling a Rule or Function */
/* without an Entity which requires a set of input Arguments (Variables) or */
/* for a Rule with a Base Entity which requires a set of parameters which can */
/* be easily obtained and passed into the Rule. */
/* */
/* Method 2: Providing Entity using EntityComponentAdapter */
/* Use the Entity Component Adapter to obtain Entity values from the */
/* Component. This method should be used when calling a Function with a Base */
/* Entity which needs to work with that Entity information from the UI. */
/* -- */

import SCC_RULES_ENGINE:Util:RuleFactory;
import SCC_RULES_ENGINE:Util:RuleInterface;
import SCC_COMMON:ENTITY:COMPONENT:EntityComponentAdapterAbstract;
import SCC_COMMON:ENTITY:IEntity;

Local RuleFactory &sccRuleFactory = create RuleFactory();
Local RuleInterface &SCC_RTRIG_20140218095510= &sccRuleFactory.getRule("SCC_RULE_ID⇒

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 139

_20140218095142", true);

Local EntityComponentAdapterAbstract &objECA;
Local array of SCC_COMMON:ENTITY:IEntity &arrIEntity;
Local SCC_COMMON:ENTITY:IEntity &objIEntity;
Local row &row;
Local number &i;

/* Make sure you are using the proper Entity Component Adapter implementation for y⇒
our Component */
/* Remove the comment markers below to implement the ECA */

/* &objECA=CreateObject("SCC_COMMON:ENTITY:COMPONENT:ECAErrorGrid"); */

/* Input Variable Declaration */

Local String &Emplid;
Local String &Institution;
Local String &Career;
Local String &Term;
/* Output Variable Declaration */

Local Number &GPA; /* Maps to Rule Output GPA*/

<*

/* Assign values from the component to the rule variables */
/* Replace ? with the appropriate values */
/* Required variables must have values passed into the rule */
/* If optional variables do not need values assigned, leave the line commented out ⇒
*/

&Emplid = ?; /* Maps to Rule Input Emplid (Required) */
&Institution = ?; /* Maps to Rule Input Institution (Required) */
&Career = ?; /* Maps to Rule Input Career (Required) */
&Term = ?; /* Maps to Rule Input Term (Required) */

*>

ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0001" , &Emplid);
ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0003" , &Institution);
ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0005" , &Career);
ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0007" , &Term);/* Execute the Rule *⇒
/

&SCC_RTRIG_20140218095510.Invoke();

/* Assign values from the rule back to the component */
/* Replace ? with appropriate values */

&GPA = ObjectGetProperty(&SCC_RTRIG_20140218095510,"V0013");

Understanding the Generated Code
The generated code contains a reference to the EntityComponentAdapterAbstract because the Trigger uses
a Base Entity. The Entity information must be passed from the Component to the Trigger Rule. The Entity
Component Adapter provides the following functionality:

• The EntityComponentAdapterAbstract (ECA) is code that maps the data in the component to the Base
Entity attached to the Rule.

• If the Base Entity has child Entities, the ECA also maps the Entity children.

• Rather than pulling data from the database, the ECA uses data in the component which may include
unsaved changes. This means that the Rule can interact directly with data from the component.

Working with the Rules Engine Chapter _

140 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Changes made to the Entities in the Rule are made to the component data also.

The ECAErrorGrid handles any Errors which may be generated by the EntityComponentAdapter. This
code is required whenever an ECA is used and provides the necessary Error Handling for the Entity
Component Adapter. Two error methods exist:

• ECAErrorGrid – This code takes care of the error messages coming back from the ECA.

• ECAErrorPoPup – Opens a popup page which displays the errors coming back from the ECA.

The IEntity array needs to be instantiated as an Array object before you can map the data from a
Component to the base Entity of a rule. Errors are generated if the Entity is directly pulled into the
code without a push to the array first. In this example, the data is being retrieved and mapped using the
BindToUIFromRowWithEntityID method.

BindtoUIfromRowWithEntity selects the correct Entity based on the Base Entity ID associated with the
Trigger Rule on the Trigger Component. This generated code has already placed the BaseEntityID in the
BindtoUIfromRowWithEntity construct.

Other methods are available through which to retrieve the Entity. They can be added but are not included
in the Generated Code:

• BindToUI: This grabs the Entity Based on the record on level 0. This would be the first non–Work,
non–View encountered in the Component.

Note: For any Component which uses, for example, a record such as INSTALLATION on level 0, this
does not work well. Binding at level 0 also implies you may be creating a relatively large Entity Tree.
Performance is a consideration.

• BindToUIfromRow: This picks the first Entity on that rowset level for example level 1. It assumes that
the Component structure and the Entity structure are going to be similar or the same. It “walks” the
Component and tries to match what is in the Component with what is in the Entity.

Note: This returns the first Entity found based on the RowSet indicated. Problems may occur when
the there are multiple RowSets in the Component on that level.

• BindToUIfromRecord: This picks the Entity from the user interface based on the record indicated.
This record is assumed to be the Production Record from which the Entity is mapped.

Note: Multiple Entities could be mapped to the same Production Record. In this case, the first Entity
is returned which may not be the right one.

For more extensive and technical information regarding these Entity Methods, see Setting Up Entity
Registry.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 141

Attach Generated Code to the Component Event
The code can be copied from the Generated Code window and pasted into the PeopleCode Event. Open
Application Designer and navigate to the PeopleCode Event. In this example, the Event is added to the
FieldChange event of a WorkRecord field:

Image: Application Designer Example for Rules Engine User Interface Integration Example

This example illustrates the Application Designer Example for Rules Engine User Interface Integration
Example.

Open the FieldChange event and paste the Generated Code for the ECA Trigger into the appropriate
event. Adjust the code to retrieve the correct row from which to select the Entity. This is the adjusted
PeopleCode on the FieldChange Event of field SCC_RE_TR_ECA_PB which is the field for the ECA
Calc button:

import SCC_RULES_ENGINE:Util:RuleFactory;
 import SCC_RULES_ENGINE:Util:RuleInterface;
 import SCC_COMMON:ENTITY:COMPONENT:EntityComponentAdapterAbstract;
 import SCC_COMMON:ENTITY:IEntity;

 Local SCC_RULES_ENGINE:Util:RuleFactory &sccRuleFactory = create SCC_RULES_ENGINE:⇒
Util:RuleFactory();
 Local SCC_RULES_ENGINE:Util:RuleInterface &SCC_RTRIG_20140218092909 = &sccRuleFact⇒
ory.getRule("SCC_RULE_ID_20140218093117", True);

 Local SCC_COMMON:ENTITY:COMPONENT:EntityComponentAdapterAbstract &objECA;
 Local array of SCC_COMMON:ENTITY:IEntity &arrIEntity;
 Local SCC_COMMON:ENTITY:IEntity &objIEntity;
 Local Row &row;
 Local number &i;

 /* Make sure you are using the proper Entity Component Adapter implementation for ⇒
your Component */
 /* Remove the comment markers below to implement the ECA */
 &objECA = CreateObject("SCC_COMMON:ENTITY:COMPONENT:ECAErrorGrid");

 /* If the current row is not the row where the entity exists, replace logic below⇒
 to get the correct row in the component */

Working with the Rules Engine Chapter _

142 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

 &row = GetRow();

 /* Bind the row of data in the comonent to an entity */
 /* Be sure to correctly bind the component to the entities used by the rule */

 &arrIEntity = CreateArrayRept(&objIEntity, 0);
 &arrIEntity.Push(&objECA.BindToUIFromRowWithEntityID(&row, "SCC_ENTITY_20140214090⇒
313"));
 &SCC_RTRIG_20140218092909.Context = &arrIEntity;

 &SCC_RTRIG_20140218092909.Invoke();

Based on the level 1 row in this example, the Entity can be selected from the current row. References
to Variable and Calculated_GPA have been removed from code. As we are using the Rule to update the
GPA Entity Property, there is no need to declare or assign a value to the &Calculated_GPA variable in this
PeopleCode.

This is the adjusted PeopleCode on the FieldChange Event of field SCC_RE_TR_PARM_PB which is the
field for the Parm Calc button:

import SCC_RULES_ENGINE:Util:RuleFactory;
 import SCC_RULES_ENGINE:Util:RuleInterface;
 import SCC_COMMON:ENTITY:COMPONENT:EntityComponentAdapterAbstract;

 Local SCC_RULES_ENGINE:Util:RuleFactory &sccRuleFactory = create SCC_RULES_ENGINE:⇒
Util:RuleFactory();
 Local SCC_RULES_ENGINE:Util:RuleInterface &SCC_RTRIG_20140218095510 = &sccRuleFact⇒
ory.getRule("SCC_RULE_ID_20140218095142", True);

 Local SCC_COMMON:ENTITY:COMPONENT:EntityComponentAdapterAbstract &objECA;
 Local Row &row;
 Local number &i;

 /* Make sure you are using the proper Entity Component Adapter implementation for ⇒
your Component */
 /* Remove the comment markers below to implement the ECA */
 /* &objECA=CreateObject("SCC_COMMON:ENTITY:COMPONENT:ECAErrorGrid"); */

 /* If the current row is not the row where the entity exists, replace logic below⇒
 to get the correct row in the component */
 &row = GetRow();

 /* Bind the row of data in the comonent to an entity */
 /* Be sure to correctly bind the component to the entities used by the rule */
 /* &SCC_RTRIG_20140218095510.Context = CreateArrayRept(&objECA.BindToUIFromRowWith⇒
EntityID(&row, "SCC_ENTITY_20140214090313"), 1); */

 /* Input Variable Declaration */

 Local string &Emplid;
 Local string &Institution;
 Local string &Career;
 Local string &Term;
 Local number &Sequence_Number;
 Local string &GPA_Type;

 /* Output Variable Declaration */

 Local number &GPA; /* Maps to Rule Output GPA*/

 /* Assign values from the component to the rule variables */
 /* Replace ? with the appropriate values */
 /* Required variables must have values passed into the rule */
 /* Optional variables do not need values assigned, leave the line commented out */

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 143

 &Emplid = &row.STDNT_SPCL_GPA.EMPLID.Value; /* Maps to Rule Input Emplid (Required⇒
) */
 &Institution = &row.STDNT_SPCL_GPA.INSTITUTION.Value; /* Maps to Rule Input Instit⇒
ution (Required) */
 &Career = &row.STDNT_SPCL_GPA.ACAD_CAREER.Value; /* Maps to Rule Input Career (Req⇒
uired) */
 &Term = &row.STDNT_SPCL_GPA.STRM.Value; /* Maps to Rule Input Term (Required) */
 &Sequence_Number = &row.STDNT_SPCL_GPA.SEQ_NUM.Value; /* Maps to Rule Input Sequen⇒
ce Number (Required) */
 &GPA_Type = &row.STDNT_SPCL_GPA.GPA_TYPE.Value; /* Maps to Rule Input GPA Type (Re⇒
quired) */

 ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0001", &Emplid);
 ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0003", &Institution);
 ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0005", &Career);
 ObjectSetProperty(&SCC_RTRIG_20140218095510, "V0007", &Term);

 &SCC_RTRIG_20140218095510.Invoke();

 /* Assign values from the rule back to the component */
 /* Replace ? with appropriate values */

 &GPA = ObjectGetProperty(&SCC_RTRIG_20140218095510, "V0013");

 &row.STDNT_SPCL_GPA.LS_GPA.Value = &GPA;

The PeopleCode has been adjusted to provide a FieldValue for each Variable to be provided to the Trigger.
For example, &Emplid =&row.STDNT_SPCL_GPA.EMPLID.Value. In this example, the &GPA value
retrieved is updated on the component by updating &row. STDNT_SPCL_GPA.LS_GPA.Value.

When the Events PeopleCode has been adjusted, the user interface integration can be tested from the
Component page.

Library of System-Delivered Rules Engine Objects

This section lists all objects, including Lists of Values, Functions, Rules, Categories, Data Sets, and Entity
Profiles that are delivered as System Data for Rules Engine. These System Functions, Rules, Categories
and Entity Profiles are delivered as part of Rules Engine feature and have a specific purpose. Those which
have a similar purpose or intended usage are grouped together into the same Rules Engine Category.
Categories with Rules that access data are delivered with an appropriate entity profile.

Lists of Values
The following Lists of Values can be used in the Rules Engine when referenced by a Rules Engine
Variable. The LOV provides Prompt Table functionality when variables are used in Rule criteria or
evaluative statements.

LOV ID Description LOV Type LOV Prompt
Record

LOV Prompt Field

SCC_LOV_
20130225065505

RE Honors Table HONOR_AWARD_
TBL

AWARD_CODE

SCC_LOV_
20131220070639

NFK Notification Translate Values PSXLATITEM SCC_NTFREQ_TYPE

Working with the Rules Engine Chapter _

144 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

LOV ID Description LOV Type LOV Prompt
Record

LOV Prompt Field

SCC_LOV_
20140123052943

NFK Announcement
Audience

Translate Values PSXLATITEM SCC_NTF_AUDCE

SCC_LOV_
20140130120917

Yes/No Prompt Ad Hoc Values N/A Y (Yes)

N (No)

SCC_LOV_
20140204053537

Rules Engine NFK
Templates

Table SCC_RULE_NTF_
VW

SCC_NTFREQ_
TMPLTID

SCC_LOV_
20140204054709

Rules Engine
Notification ID

Table SCC_NTF_CON_
CFG

SCC_NTFREQ_
TMPLTID

System Variables
The following System Variables can be used in the Rules Engine when referenced by a Rules Engine
Variable. The Rule Category Name is here for reference only as System Variables are considered available
for use in any Rule.

System Variable Name Rule Category Name Function

Current Date DateTime Returns the Current Date in format YYYY-
MM-DD.

Current date Time DateTime Returns the Current Date in format YYYY-
MM-DD HH:MM:SS.

Current Time DateTime Returns the Current Time in format
HH:MM:SS.

Operator Id Text Returns the value for the Current Operator ID.

User Language Text Returns the User Language based on User
Defaults.

Data Sets
These System Data Sets can be attached to Rules Engine Variables and used as “placeholders” for
multiple combined values. Data Sets can be used as lists.

Data Set ID Name Long Description Purpose

SCC_ENTITY_
20130418162950

Message Catalog Data Set Message Catalog Data Set This Data Set can be used in
combination with a function
to retrieve formatted Message
Catalog Text from the system.

SCC_ENTITY_
20130306064022

AIR Courses AIR Courses This data set can be used to as
a placeholder for AIR course
values

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 145

Data Set ID Name Long Description Purpose

SCC_ENTITY_
20130528134954

AM Results AM Weights and Marks used
for calculating the Primary
Course Result

This data set is used in
an primary Course result
calculation Rule.

SCC_ENTITY_
20130711074744

Academic Term Academic Term This Data Set is used in
function Getterminformation
and provides a combined set
of Term setup table values.

SCC_ENTITY_
20130711075100

Academic Session
Information

Academic Session
Information

This data set is used in a
function which provides
information for a term
session.

SCC_ENTITY_
20140120043511

ActiveResearchSupervisors Active Research Supervisors This data set is used in a
function which provides
information for a Research
Supervisor.

SCC_ENTITY_
20140120083337

ActiveResearchAdminProfiles Active research administrator
profiles

This data set is used in a
function which provides
information for a Research
Affiliation Profile.

SCC_ENTITY_
20140226150042

EMS Evaluation Information EMS Evaluation Information This data set aggregates
relevant information about
the Evaluation. Used to pass
Evaluation data to Rules.

SCC_ENTITY_
20140226150400

EMS Evaluation Keys EMS Evaluation Keys This data set contains
evaluation key data (for
example, Evaluation Instance,
 EMPLID, INSTITUTION).
 Used to pass key data to
Rules in a generic fashion (
for example, KEY_1, KEY_2,
 etc).

Note: EMPLID and
INSTITUTION properties
have been added to the EMS
Evaluation Information
Dataset to simplify access to
those fields.

SCC_ENTITY_
20140226150717

EMS Evaluation XRef Keys EMS Evaluation Cross-
Reference Keys

This data set contains the
Cross-Reference Keys of the
Evaluation. Used to pass key
data to Rules in a generic
fashion (for example, KEY_1,
 KEY_2, etc).

SCC_ENTITY_
20140226152106

EMS Rating Component EMS Rating Component This data set contains Rating
Component fields. Used
to pass Rating Component
Information to Rules.

Working with the Rules Engine Chapter _

146 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Data Set ID Name Long Description Purpose

SCC_ENTITY_
20140130004615

Text Catalog Data Set Data set for Text Catalog
based messages

This data set can be
used in combination
with System Function
“CreateTextCatalogMessage
“. This function retrieves
message text from the Text
Catalog and populates the data
set.

SCC_ENTITY_
20140224074528

NFK Template Variables NFK Template Variables This data set is used by
delivered Notification
Framework rules to populate
required notification
variables.

SCC_ENTITY_
20140224073623

Email Attachments Email Attachments This data set is used by
Notification Framework Rules
to populate Email Attachment
values.

System Delivered Categories

Category ID Name Long Description Purpose

SCC_RULE_CAT_
20130121071454

SystemTest This Category exists to
build and test Delivered
Developer functions and
system variables. The System
Test Category consists of self–
sustaining mini test suites that
can test whether delivered
functions work the way they
should.

System Test Functions
which should be used on
test environments for system
testing only. These Rules can
be on test environments to
test basic functionality of
the Rules Engine. System
Tests include a basic test run
of all delivered functions
and Rules and includes data
delivered as test profile where
possible. The test profile data
is based on Campus Solutions
demo data and may need to be
changed for use on your test
environment.

SCC_RULE_CAT_
20130211055805

APT Functions APT Functions General purpose functions
which can be used by
institutions as an example of
how to build similar Rules.

SCC_RULE_CAT_
20130510122554

Student Records Generic Student Records Generic
Functions

Student Records Generic
Functions.

SCC_RULE_CAT_
20120711124111

Math All Generic Math Functions These functions can be used
to perform math functions.
 For example Add, Divide,
 Subtract.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 147

Category ID Name Long Description Purpose

SCC_RULE_CAT_
20120711141824

String All Generic String Functions These functions can be used
to perform manipulations of
string values. For example,
 Uppercase which converts
lowercase text to uppercase
text.

SCC_RULE_CAT_
20120711155409

DateTime All Generic Date, Time, and
DateTime Functions

These functions can be used
to perform different Date and
DateTime manipulations. For
example AddDaystoDate,
 which adds a specified
number of days to date and
returns the new date.

SCC_RULE_CAT_
20120802213716

Entity Functions Functions for dealing with the
entity context. Save, Validate,
 Add, Remove etc.

These functions can be used
to Save, Validate, Add, and
Remove Entities. These
are the functions that are
commonly used to insert and/
or update data into data tables.

SCC_RULE_CAT_
20120807013921

Debug Functions to assist in
debugging issues

These functions can be called
for debugging purposes. The
functions put debugging
information into a log file.

SCC_RULE_CAT_
20121203135246

Number All Generic Number
Functions

Currently no number
functions have been delivered.
 This Category is a place
holder for future usage.

SCC_RULE_CAT_
20130530144109

Text Messages Text Messages These functions can be used
to populate Message text
from either the Message
Text Catalog or the Text
Catalog. Use functions from
this category if you want to
retrieve formatted Message
text into your Rule.

Category for Activities Management
Rule Category for the Activities Management feature.

Category ID Name Long Description Purpose

SCC_RULE_CAT_
20130425123523

AM Calculation Rules AM Calculation Rules These Rules are delivered
as part of the Activity
Management (AM) feature.

Categories for Program Enrollment
Rule Categories for the Program Enrollment feature.

Working with the Rules Engine Chapter _

148 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Category ID Name Long Description Purpose

SCC_RULE_CAT_
20130219025032

AIR Functions AIR Functions General purpose functions
that access the academic item
registry and can be used by
institutions as an example of
how to build similar Rules or
be leverages as-is into their
own Rules

SCC_RULE_CAT_
20130211055805

APT Functions APT Functions General purpose functions
that access the academic
progress tracker and can be
used by institutions as an
example of how to build
similar Rules or be leverages
as-is into their own Rules

Categories for Research
Rule Categories defined for Research are listed below. They are used for Service Requests components,
Research Self Service components, and for online edits in Research administrative components.

Category ID Name Long Description Purpose

SCC_RULE_CAT_
20140120040657

Research Functions Research Functions These functions are used in
Rules belonging to the other
Research categories.

SCC_RULE_CAT_
20140116030817

Research Candidates Research Candidate Rules

This includes Consumption
and Thesis Rules as the
primary keys for these
entities are the same as for a
candidate.

These Rules are most likely
used in the Research Rule
Types Component.

SCC_RULE_CAT_
20130823033945

Research Supervisors Research Supervisor Rules These Rules are most likely
used in the Research Rule
Types Component.

SCC_RULE_CAT_
20140122021007

Research Topics Research Topic Rules These Rules are most likely
used in the Research Rule
Types Component.

SCC_RULE_CAT_
20140205035611

Research Assignments Research Assignment Rules These Rules are most likely
used in the Research Rule
Types Component

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 149

Category ID Name Long Description Purpose

SCC_RULE_CAT_
20140128233029

Service Request Functions Service Request Functions These Functions would be
used in Service Request
Category Rules.

SCC_RULE_CAT_
20131028041439

Service Requests Research and non research
service request Rules

These Rules are used in
Rule Trigger definitions for
Research Service Requests
Components for student and
administrators.

SCC_RULE_CAT_
20140115030355

Research Self Service Task Rules used to
determine the recipient of
the notification, when the
student performs a Service on
the Research Candidate self
service page

These Rules are used in the
Research Service ID Setup
component to determine
the Notification Recipient
EmplID.

Category for Evaluation Management System (EMS)
Rule Category defined for Evaluation Management System are listed below. They are used for calculating
Rating Component Values and Rating Scheme values.

Category ID Name Long Description Purpose

SCC_RULE_CAT_
20140226144850

Evaluation Management
System

Evaluation Management
System

Contains Rule Groups
and Data Sets required to
implement Rules Engine
processing for EMS; along
with several example Rules.

Entity Profiles
Profile ID Name Long Description Purpose

SCC_EPRFL_
20130329103345

System Profile AIR & APT System Profile AIR & APT Used by Rules Engine
Category AIR Functions and
APT functions which need
to access System Academic
Items.

SCC_EPRFL_
20130306044322

System Data Set System Data Set Data Set Profile which is used
to deliver System Data Sets.

SCC_EPRFL_
20130510082227

System Profile AM System Profile Activity
Management

This profile is used by system
—delivered Categories for
Activity Management.

Working with the Rules Engine Chapter _

150 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Profile ID Name Long Description Purpose

SCC_EPRFL_
20140214091401

Student Car Term Information Student data in STDNT_CAR
_TERM and child records.

This profile is used to
illustrate the proof of concept
for Rules Engine user
interface integration.

Entities
The following Entities are delivered as Rules Engine objects.

Entity ID Name Long Description Purpose

SCC_ENTITY_
20140218085710

Student Enrollment - Read
Only

This entity is used to pull
enrollment information for a
specific student using CLASS
_TBL_SE_VW.

This Entity is used to illustrate
the proof of concept for
Rules Engine user interface
integration.

SCC_ENTITY_
20140214090313

Student Special GPA Entity for Student Special
GPA in Student Records using
STDNT_SPCL_GPA.

This Entity is used to illustrate
the Proof of concept for
Rules Engine user interface
integration.

Rule Groups
Rule Groups provide a template in which Category, Base Entity, Rule Usage and Input and output
Variables are predefined. Each Rule created in a Rule Group inherits the same characteristics as the Rule
Group. Rule Groups are commonly used to provide a template for User Interface integration or when
there is the need to call multiple Rules in the same manner using the same characteristics.

Rule Group ID Name Long Description Purpose

SCC_RULEGR_ID_
20140226153734

EMS Rating Component
Calculation

EMS Rating Component
Calculation

All Rules calculating Rating
Component values within a
Rating Scheme must use this
Rule group.

SCC_RULEGR_ID_
20140226154255

EMS Rating Scheme
Calculation

EMS Rating Scheme
Calculation

All Rules calculating Rating
Scheme Overall Rating values
must use this Rule group.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 151

Rule Group ID Name Long Description Purpose

SCC_RULEGR_ID_
20140224091018

Academic Progress Tracker
Item (version 1.1)

Academic Progress Tracker
Item Rule Group

This Rule Group provides
a uniform set of input and
output parameters to all
Rules attached. The uniform
template enables interaction
with the Academic Progress
Tracker user interface
functionality delivered for
Program Enrollment.

This Rule group replaces
Rule Group “Academic
Progress Tracker Item” with
ID SCC_RULEGR_ID_
20130603144145

SCC_RULEGR_ID_
20130603144145

Academic Progress Tracker
Item

Academic Progress Tracker
Item Rule Group

This Rule Group has been
Inactivated.

SCC_RULEGR_ID_
20140122023122

Research Assignments Research Assignments Rule
Group

This Rule Group provides
a uniform set of input and
output parameters to all
Research Assignment Rules
attached to this Rule Group.

SCC_RULEGR_ID_
20140116025712

Research Candidate Research Candidate Rule
Group

This Rule Group provides
a uniform set of input and
output parameters to all
Research Candidate Rules
attached to this Rule Group.

SCC_RULEGR_ID_
20140206012041

Research Thesis Research Thesis Rule Group This Rule Group provides
a uniform set of input and
output parameters to all
Research Thesis Rules
attached to this Rule Group.

SCC_RULEGR_ID_
20140115031545

Research Self Service Task Research Self Service Task This Rule Group provides
a uniform set of input and
output parameters to all
Research Self Service Rules
attached to this Rule Group.

SCC_RULEGR_ID_
20131202050022

Research Supervisor Research Supervisor This Rule Group provides
a uniform set of input and
output parameters to all
Research Supervisor Rules
attached to this Rule Group.

SCC_RULEGR_ID_
20140205033942

Research Topic Research Topic Rule Group This Rule Group provides
a uniform set of input and
output parameters to all
Research Topic Rules attached
to this Rule Group.

Working with the Rules Engine Chapter _

152 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule Group ID Name Long Description Purpose

SCC_RULEGR_ID_
20131028050041

Service Request Service Request Rule Group
based on Service Request
Header entity

Bundle 48: Documentation-
only update — added this rule
group

SCC_RULEGR_ID_
20160829054915

Overall Calculation with
Multiple Scales

Overall Calculation with
Multiple Scales

This Rule Group definition is
specifically for the creation of
rules that can be invoked from
components used in AM result
calculation when there is a
result row for an activity that
uses a different result scale
from the parent.

System Test Category Functions

Rule ID Name Long Description

SCC_RULE_ID_20130218075844 System Test: Simple Evaluative
Statement Test (Honors Example)

This system test Rule tests a simple
evaluative statement. The basis for
this test is a simplified example of an
Honors Classification Evaluation Rule (
Judicium).

SCC_RULE_ID_20130129055908 Test Math Functions (CALL all Math
Functions)

This Function has been created to test
through all delivered math functions.
 Testing includes the following functions
in Category "Math":

• Add

• Subtract

• Multiply

• Divide

• Round

• Truncate

• Mod

SCC_RULE_ID_20130129073324 Test String Functions (CALL all String
Functions)

This function Tests through all delivered
String Functions.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 153

Rule ID Name Long Description

SCC_RULE_ID_20130212065258 System Test: APT Entities: Example
Simple Judicium/Honors Rule

This Rule has been created to Test the
Rules Engine interacting with System
Delivered APT Academic Items. The
Rule uses Entities created from System
Delivered academic Item Types in APT
and tests whether delivered functions and
statements interact correctly with these
entities.

Note: This Rule should NOT be run on a
production Environment.

Example Rule:

The student has completed a Bachelor's
program and thinks that based on his
grades that he should be able to request
an Honors classification on his degree.
 To determine whether an Honors
classification applies, a number of things
need to be evaluated:

• Total Credit needs to be equal to or
above specified amount

• Average Mark must be above
specified minimum

• Lowest Mark must be above
specified minimum

PREREQUISITE: You need to have
three distinct Result Types defined which
can be used to enter Results against
planned academic item types in the
Academic Progress Tracker. These
Result Types Names should be added to
the following variables as defaults:

• Variable Result Type: For numeric
results stored against the Course
academic Item.

• Variable Result Type Credits: For
numeric credit results stored against
the Course academic item.

• Variable Honor Result Type: For
alphanumeric result which holds the
Honors Classification. Use a Text
field and not a prompt table.

Working with the Rules Engine Chapter _

154 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Long Description

SCC_RULE_ID_20130121071654 Test List Functions (Copy List Via
Assign)

The purpose of this System test function
is to run through several scenario’s in
which list functions are tested:

1. Assignment of complete list to List
(Text).

2. Assignment of complete list to List (
Number),

3. Assign value from list to individual
Variable in For-Each and evaluate
content.

4. Evaluate value from list in For-Each
without assigning to Variable first.

SCC_RULE_ID_20130524045353 Test List Functions II (call All list
functions)

The purpose of this System test function
is to run through several scenarios in
which list functions and variables are
tested:

1. Add to list.

2. Length of list.

3. Sort list.

4. Assign list.

5. Clear list.

SCC_RULE_ID_20130516005432 Test List Functions III (Data Set list) The purpose of this System test function
is to run through several scenarios
in which list functions using data set
variables are tested:

1. Add to list.

2. Length of list.

3. Sort list.

4. Assign list.

5. Clear list.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 155

Rule ID Name Long Description

SCC_RULE_ID_20130205094910 Test Date Functions (CALL all
DateTime Functions)

Test Date Function (CALL all DateTime
Functions)

• Add Days to Date

• Add Months to Date

• Retrieve Day from CurrentDate

• Retrieve Hour, Minute, Seconds
from Time

• Add Years to Date

• Return Day from Date

• Get Current Date

• Compare Current Dates

• Return Hour from Time

• Return Minute from Time

• Subtract Days and Months and
Years from Date

• Retrieve Current Year from Date

AIR Category Functions

Rule ID Name Long Description

SCC_RULE_ID_20130219023428 SystemTest: Rule Retrieves AIR and
Course Catalog information

SystemTest: Rule Retrieves AIR and
Course Catalog Course information
based on a specified Academic Item ID,
an institution value and an effective date.
 The information retrieved is passed into
a Data Set.

SCC_RULE_ID_20160425080318 AIR description Get AIR header setup description
filtering by Academic Institution,
 Academic Item ID and Date.

Working with the Rules Engine Chapter _

156 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

APT Category Functions
Rule ID Name Long Description

SCC_RULE_ID_20130212023549 Retrieve Maximum Attempt Functions Tested:

This Rule retrieves the Maximum
Attempt row for a specified academic
item in the student's Academic Progress
Tracker.

Input variables needed are the following
key fields which are needed to identify
the specific Academic Item Attempt row.
 The information can be retrieved from
the Academic Item for which you need
to retrieve the maximum attempt:

• Student ID

• Institution

• APT Instance

• APT Item sequence

Example Use: You want to add a new
attempt row into to the Academic
Progress Tracker for Course Math101
because the student failed the previous
attempt, but you need to know what the
maximum registered attempt is prior to
inserting.

SCC_RULE_ID_20130305043300 SystemTest Function: Assign APT
Result Values and Save

This Function can be used to assign
a Result Type and a Numeric Result
or Alphanumeric Result to an APT
Result row in the Student Academic
Progress Tracker. The Save Entity
Statement is called as part of this
function to immediately save the created
or updated Row. Attempt Outcome is
set to “Conditional" status 20. Include in
Calculation Flag is set to Yes.

SCC_RULE_ID_20160524125846 Get Begin Date for APT Curriculum
Term.

Get Begin Date for APT Curriculum
Term.

APT Category Function Rules
Rule ID Name Long Description

SCC_RULE_ID_20130607153122 Check for Sub-Plan Condition:
Marketing

(Version 3 is Active.)

Checks APT/Program stack for
MARKETING Sub-Plan as a condition
for selecting an APT option.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 157

Rule ID Name Long Description

SCC_RULE_ID_20130603165523 Precondition for 2155: Expert

(Version 3 is Active.)

Student must have satisfied the
requirements for 'Economics Year 1
Option List A' (1743), and must have
completed MGMT 1001 with at least a
grade of C.

SCC_RULE_ID_20140320070913 Check for Sub-Plan Condition:
Marketing

TEXT CATALOG

(Version 2 is Active.)

Checks APT/Program stack for
MARKETING Sub-Plan as a condition
for selecting an APT option using TEXT
CATALOG.

Activity Management Calculation Category Rules

Rule ID Name Long Description

SCC_RULE_ID_20130508133749 AM One Time Late Penalty The AM One Time Late Penalty
subtracts the one time penalty from the
student's earned mark and inserts a new
result row for the student.

SCC_RULE_ID_20130425124530 AM Primary Course Result AM Primary Course Result.

SCC_RULE_ID_20130521103202 AM Capped Late Penalty The AM Capped Late Penalty evaluates
the earned mark entered. If the earned
mark is less than the capped mark
parameter, the student's earned mark is
retained. If the earned mark is greater
than the capped mark, the student
receives the capped mark.

SCC_RULE_ID_20130521095817 AM Daily Late Penalty The AM Daily Late Penalty evaluates
the earned mark entered and the number
of days the submission is late. The late
penalty is inserted on a new result row
for the student.

SCC_RULE_ID_20130521094603 AM Fixed Penalty Rule The AM Fixed Late Penalty inserts on a
new result row for the student with the
value indicated on the fixed late penalty
Rule.

SCC_RULE_ID_20130516135412 AM Expires to Zero Penalty AM Expires to Zero Penalty.

SCC_RULE_ID_20130515141726 AM Weekly Late Penalty The AM Weekly Late Penalty evaluates
the earned mark entered and the number
of weeks the submission is late. The late
penalty is inserted on a new result row
for the student.

Working with the Rules Engine Chapter _

158 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Long Description

SCC_RULE_ID_20130515130457 AM Late Penalty Online Driver Rule This Rule applies late penalties
automatically on the IAM Result pages
(Result Roster, including both the
administrative and WorkCenter rosters);
and IAM Result Details) when a mark
is entered with a submission date after
the due date for a specific assessment
item. The Rule returns a late penalty
value and a new row indicating the
penalty is inserted on the student's
result. Late penalty parameters are setup
on either the Activity Registry or the
Activity Manager. The late penalty
options include: a one-time penalty, a
daily penalty, a weekly penalty, a fixed
penalty or a capped penalty. Depending
on the chosen parameter this Rule calls
the associated penalty Rule for the
calculation of the penalized mark

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140808043722

Get Outcome for a Mark in Result Scale Get Outcome for a Mark in Result Scale

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140807093640

Get Result Scale Detail Setup Get Result Scale Detail Setup

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140807153130

Get Result Scale Option Setup Get Result Scale Option Setup: get
decimals and enable setup for a Result
Scale

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140521131818

IAM Resit Evaluation IAM Resit Evaluation

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140508022130

IAMGetNextExam IAMGetNextExam

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20160824092103

Overall Calculation with Multiple Scales
1: Main Rule

Overall Calculation with Multiple Scales
1: Main Rule

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 159

Rule ID Name Long Description

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20160823074658

Overall Calculation with Multiple Scales
2: Mathematical conversion

Overall Calculation with Multiple Scales
2: Mathematical conversion

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140812101105

Resit Calculation Resit Calculation

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140806043742

Resit Calculation 1 Get Activity Setup (
Calculation Option & Supplemental)

Resit Calculation 1A Get Activity Setup:
Get Calculation option and supplemental
activity from Resit Options. (ACM_
MAIN entity)

Calculation Options: Average All Marks
or Highest Mark or Most Recent Mark

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141028114928

Resit Calculation 2 Get Attempts and
Results for Assessment Item

Resit Calculation 2 Get Attempts and
Results for Assessment Item

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20161010085709

Resit Calculation 2 Get Attempts and
Results for Category

Resit Calculation 2 Get Attempts and
Results for Category

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141030022736

Resit Calculation 2 Get Attempts and
Results for Exam

Resit Calculation 2 Get Attempts and
Results for Exam

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141103014315

Resit Evaluation 1A Get Activities by
Registry_id for Assessment item Entity

Resit Evaluation 1A Get Activities by
Registry_id for Assessment item Entity

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20160926062235

Resit Evaluation 1A Get Activities by
Registry_id for Category

Resit Evaluation 1A Get Activities by
Registry_id for Category

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141105073654

Resit Evaluation 1A Get Activities by
Registry_id for Exam Entity

Resit Evaluation 1A Get Activity Setup
for Assessment item Entity: Content
Type, Parent Activity Id, Supplemental
Activity Id, Resit Period Option,
 Allowed Attempts

Working with the Rules Engine Chapter _

160 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Long Description

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141030052857

Resit Evaluation 1A Get Activity Setup
for Assessment item Entity

Resit Evaluation 1A Get Activity Setup
for Assessment item Entity: Content
Type, Parent Activity Id, Supplemental
Activity Id, Resit Period Option,
 Allowed Attempts

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20160926074059

Resit Evaluation 1A Get Activity Setup
for Category Entity

Resit Evaluation 1A Get Activity Setup
for Category item Entity: Content
Type, Parent Activity Id, Supplemental
Activity Id, Resit Period Option,
 Allowed Attempts

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141030100416

Resit Evaluation 1A Get Activity Setup
for Exam Entity

Resit Evaluation 1A Get Activity Setup
for Exam Entity: Content Type, Parent
Activity Id, Supplemental Activity Id,
 Resit Period Option, Allowed Attempts

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140512003813

Resit Evaluation 2 Get Student, Activity
Data

Resit Evaluation 2 Get Student, Activity
Data

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140603155223

Resit Evaluation 2B Get Academic
Period Data

Resit Evaluation 2B Get Academic
Period Data

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141103024942

Resit Evaluation 3 Get Number
of PREVIOUS Attempts used for
Assessment Item

Resit Evaluation 3 Get Number
of PREVIOUS Attempts used for
Assessment Item

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20160926103714

Resit Evaluation 3 Get Number of
PREVIOUS Attempts used for Category

Resit Evaluation 3 Get Number of
PREVIOUS Attempts used for Category

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141105054414

Resit Evaluation 3 Get Number of
PREVIOUS Attempts used for Exam

Resit Evaluation 3 Get Number of
PREVIOUS Attempts used for Exam

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141102022917

Resit Evaluation 3 Get and Evaluate
Number of Attempts used for
Assessment Item

Resit Evaluation Get and Evaluate
Number of Attempts used for
Assessment Item entity

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20160926065724

Resit Evaluation 3 Get and Evaluate
Number of Attempts used for Category

Resit Evaluation Get and Evaluate
Number of Attempts used for Category
entity

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 161

Rule ID Name Long Description

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20141102023250

Resit Evaluation 3 Get and Evaluate
Number of Attempts used for Exam

Resit Evaluation Get and Evaluate
Number of Attempts used for Exam
entity

Bundle 48: Documentation-only update
— added this rule

SCC_RULE_ID_20140618045703

Resit Evaluation 4 Exam Resit Setup
Next Period

Resit Evaluation 4 Exam Resit Setup
Next Period

Date and Time Category Functions
Functions in the following category can be used to execute business logic using Date and Time values.
For example, you can use the functions to convert Strings to Date or to calculate the number of days
between two Date values.

Rule ID Name Long Description

SCC_RULE_ID_20120711162453 GetCurrentDate Gets the Current Date from the System.

SCC_RULE_ID_20130513065254 DaysToWeeks This function takes the number of days
and convert it to weeks, truncating the
calculated value.

SCC_RULE_ID_20130509114010 YearsBetweenDates This function takes two dates and
calculates the number of years,
 truncating any partial year between the
two dates. If the Date From value is later
than the Date To field, the result is a
negative number.

SCC_RULE_ID_20130508165644 MonthsBetweenDates This function takes two dates and
calculates the number of months
truncating any partial month between
the two dates. If the Date From value is
later than the Date To field, the result is a
negative number.

SCC_RULE_ID_20130508164259 WeeksBetweenDates This function takes two dates and
calculates the number of weeks
truncating any partial week between the
two dates. If the Date From value is later
than the Date To field, the result is a
negative number.

SCC_RULE_ID_20130508152325 DaysBetweenDates This function takes two dates and
calculates the number of days between
the two dates. If the Date From value is
later than the Date To field, the result is a
negative number.

SCC_RULE_ID_20120711181602 Year Returns the year value from a date.

Working with the Rules Engine Chapter _

162 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Long Description

SCC_RULE_ID_20120711180936 Month Returns the month value from a date.

SCC_RULE_ID_20120711180404 Hour Returns the hour value from a time.

SCC_RULE_ID_20120711171519 SubtractYearsFromDate Subtract a specific number of years from
a date returning the calculated date.

SCC_RULE_ID_20120711171113 SubtractMonthsFromDate Subtract a specific number of months
from a date returning the calculated date.

SCC_RULE_ID_20120711165819 SubtractDaysFromDate Subtracts a specific number of days from
a date returning the calculated date.

SCC_RULE_ID_20120711165049 AddYearsToDate Add a specific number of years to a date
returning the calculated date.

SCC_RULE_ID_20120711164350 AddMonthsToDate Add a specific number of months to a
date returning the calculated date.

SCC_RULE_ID_20120711163227 AddDaysToDate Add a specific number of days to a date
returning the calculated date.

SCC_RULE_ID_20120725170243 Second Returns the second value from a time.

SCC_RULE_ID_20120725165438 Minute Returns the minute value from a time.

SCC_RULE_ID_20120725163802 Day Returns the day value from a date

SCC_RULE_ID_20131119192253 StringToDate Convert a String in the format YYYY-
MM-DD to a Date.

SCC_RULE_ID_20131119193042 StringToDateTime Convert a String to a Date Time value.

SCC_RULE_ID_20131119193911 StringtoTime Convert a String to a Time value.

Debug Category Functions
Rule ID Name Long Description

SCC_RULE_ID_20120807014818 Debug Current Context Outputs the current context as XML.

SCC_RULE_ID_20120807014738 Debug Context Outputs the current full context in xml to
the debug log in informational logging
level.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 163

Entity Category Functions
Rule ID Name Long Description

SCC_RULE_ID_20120802214353 SaveAllEntity Saves all the entities in the Context
and their children. It performing all
validation and pre-save logic and
deleting any entities marked for deletion.

SCC_RULE_ID_20120806111753 ValidateEntity Runs entity validation, providing the
error/warning state.

SCC_RULE_ID_20120802213958 SaveEntity Saves the Current Entity Context and all
Children. It performs all validation and
pre-save logic and deleting any entities
marked for deletion.

SCC_RULE_ID_20120802215742 UnDeleteEntity Marks the current entity and all it's
children for to be undeleted. This simply
marks the entity for undeletion, to finish
the undelete call save.

SCC_RULE_ID_20120802215730 DeleteEntity Marks the current entity and all it's
children for deletion. This simply marks
the entity for deletion, to finish the delete
call save.

Math Functions
Rule ID Name Long Description

SCC_RULE_ID_20120711125620 Subtract Subtract one value from another giving a
result.

Result = Sum(Value 1 - Value 2)

SCC_RULE_ID_20120711124755 Add Add two values into a results

Result = Add(Value 1 + Value 2)

SCC_RULE_ID_20120716174126 SubtractTruncate Subtract one value from another giving a
result truncated to the precision.

Result = Sum(Value 1 - Value 2),
 Precision

SCC_RULE_ID_20120716173508 SubtractRound Subtract one value from another giving a
result rounded to the precision.

Result = Round(Value 1 - Value 2),
 Precision

SCC_RULE_ID_20120716173227 AddTruncate Add two values together giving a result
rounding to the given precision.

Result = Round(Value 1 + Value 2)

Working with the Rules Engine Chapter _

164 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Long Description

SCC_RULE_ID_20120712162241 AddRound Add two values together giving a result
rounding to the given precision.

Result = Round(Value 1 + Value 2)

SCC_RULE_ID_20120712161717 MultiplyTruncate Multiply two values together giving a
result truncating to the given precision.

Result = Truncate(Value 1 * Value 2),
 Precision

SCC_RULE_ID_20120712160911 MultiplyRound Multiply two values giving a result
rounding it to the given precision.

Result = Round(Value 1 * Value 2)

SCC_RULE_ID_20121204164104 AverageTruncate Sum the contents of a list and divide by
the number of items in the list, truncating
the result by the precision.

Ave = Truncate(Sum(List)/Len(List),
 Precision)

SCC_RULE_ID_20121204163908 AverageRoundDown Sum the contents of a list and divide by
the number of items in the list, rounding
down the result by the precision.

Ave = RoundDown(Sum(List)/Len(List),
 Precision)

SCC_RULE_ID_20121204163746 AverageRoundUp Sum the contents of a list and divide by
the number of items in the list, rounding
up the result by the precision.

Ave = RoundUp(Sum(List)/Len(List),
 Precision)

SCC_RULE_ID_20121204163355 AverageRound Sum the contents of a list and divide by
the number of items in the list, rounding
the result by the precision.

Ave = Round(Sum(List)/Len(List),
 Precision)

SCC_RULE_ID_20121204161244 Average Sum the contents of a list and divide by
the number of items in the list.

Ave = Sum(List)/Len(List)

SCC_RULE_ID_20120712155703 DivideRoundDown Divide one value from another giving
a result rounding down to the given
precision.

Result = Divide(Value 1 / Value 2)

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 165

Rule ID Name Long Description

SCC_RULE_ID_20120712151532 DivideRoundUp Divide on value into another giving a
result rounding up to the given precision.

Result = RoundUp(Value 1 / Value 2)

SCC_RULE_ID_20120712130748 DivideTruncate Divide one value from another giving a
result truncating it to the given precision.

Result = Divide(Value 1 / Value 2)

SCC_RULE_ID_20120712125721 DivideRound Divide one value from another giving a
result rounding it to the given precision.

Result = Divide(Value 1 / Value 2)

SCC_RULE_ID_20120712121748 RoundDown Round a numeric value to a specific
number of digits.

Result = RoundDown(Value, Decimal
Places)

This function performs rounding where
value less than 1.0 would result the value
being truncated unless the number is
negative, then it is rounded down.

SCC_RULE_ID_20120712114110 RoundUp Round a numeric value to a specific
number of digits.

Result = RoundUp(Value, Decimal
Places)

This function performs rounding where
value greater than 0.0 would result the
value being rounded to 1, and values at
0.0 would result in the value not being
rounded.

SCC_RULE_ID_20120730124647 SubtractRoundUp Subtract one value from another giving a
result rounded up to the precision.

Result = RoundDown(Value 1 - Value 2),
 Precision

SCC_RULE_ID_20120730123301 AddRoundDown Add two values together giving a result
rounding down to the given precision.

Result = Round(Value 1 + Value 2),
 Precision

SCC_RULE_ID_20120730121901 MultiplyRoundDown Multiply two values giving a result
rounding down to the given precision.

Result = RoundDown(Value 1 * Value
2), Precision

Working with the Rules Engine Chapter _

166 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Long Description

SCC_RULE_ID_20120730121234 MultiplyRoundUp Multiply two values giving a result
rounding up to the given precision.

Result = RoundUp(Value 1 * Value 2),
 Precision

SCC_RULE_ID_20120730124327 SubtractRoundDown Subtract one value from another giving a
result rounded down to the precision.

Result = RoundDown(Value 1 - Value 2),
 Precision

SCC_RULE_ID_20120730123457 AddRoundUp Add two values together giving a result
rounding up to the given precision.

Result = RoundUp(Value 1 + Value 2),
 Precision

SCC_RULE_ID_20120711130546 Multiply Multiply Value 2 values giving a result.

Result = Multiply(Value 1 x Value 2)

SCC_RULE_ID_20120711140717 Mod This function performs the modulus
math function, returning the remainder
when dividing one number by another.
 Result = Modulus(Value 1 / Value 2)

SCC_RULE_ID_20120711134943 Truncate Truncate the decimal number to a
specific precision.

Result = Truncate(Value, Precision)

SCC_RULE_ID_20120711133255 Round Round a numeric value to a specific
number of digits.

Result = Round(Value, Decimal Places)

This function performs natural rounding,
where value of 0.5 or higher would result
the value being rounded to 1, and values
lower than 0.5 would result in the value
being rounded to 0.

SCC_RULE_ID_20120711131114 Divide Divide one value from another giving a
result.

Result = Divide(Value 1 / Value 2)

SCC_RULE_ID_20131119134507 StringToNumber Convert a string to a number.

SCC_RULE_ID_20131120095322 Max Retrieves the maximum value from a list
of numbers.

SCC_RULE_ID_20131120095954 Min Retrieves the minimum value from a list
of numbers.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 167

String Category Functions
Functions in the following category can be used to execute business logic using string values. For
example, you can use the functions to convert DateTime or Numbers to String.

Rule ID Category Name Name Long Description

SCC_RULE_ID_
20130419101915

String Concatenate Concatenate two strings into a
single string.

SCC_RULE_ID_
20120711154104

String UpperCase Converts a string to upper
case.

SCC_RULE_ID_
20120711154450

String LowerCase Convert a string to lower case.

SCC_RULE_ID_
20120711153301

String Substring Returns a string from a longer
string based on position.

SCC_RULE_ID_
20120711152058

String StringLength Returns the length of a string.

SCC_RULE_ID_
20131119143620

DateTimeToString Convert a DateTime value to
a String

SCC_RULE_ID_
20131119143620

SCC_RULE_ID_
20131119140237

DateToString Convert a Date to a String SCC_RULE_ID_
20131119140237

SCC_RULE_ID_
20131119135320

NumberToString Convert a Number To a String SCC_RULE_ID_
20131119135320

SCC_RULE_ID_
20131119185227

TimeToString Convert a Time value to a
String

SCC_RULE_ID_
20131119185227

Number Category Functions
Functions in the following category can be used to execute business logic using numeric values. For
example, you can use the functions to convert numbers to string or retrieve a maximum number from a
number list.

Rule ID Name Long Description

SCC_RULE_ID_20131119134507 StringToNumber Convert a string to a number.

SCC_RULE_ID_20131120095322 Max Retrieves the maximum value from a list
of numbers.

SCC_RULE_ID_20131120095954 Min Retrieves the minimum value from a list
of numbers.

Using Number Category Functions
• Using Min and Max

Working with the Rules Engine Chapter _

168 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

• Description: When using delivered statements Min or Max in the Number Category, you can
retrieve a minimum or maximum Mark, respectively. A minimum or maximum number can be
retrieved from a Variable of Type List which contains all numeric values or from Lists of type
Data Set. In this case the minimum or maximum can be retrieved from the property of type
number.

• How to Use: You create a Data Set List which contains a list of courses with accompanying
Course Mark. From this list, you want to retrieve the Course with the highest Course Mark. The
function Max can be used to retrieve the Maximum result from the list.

• Using StringToNumber

• Description: This function converts a numeric string into a true number. Because a numeric value
obtained from a property of type string can only be assigned to a Variable of type String, it may be
necessary to convert the numeric string to a number before it can be used.

• How to Use: For example, a value, 77, is retrieved from a property of type string. You would
like to use this value in a calculation. The Math function Add only accepts numeric values or
values from a numeric variable as input. In order to use the function Add, the variable which
contains value 77 must first be converted into a true number. This can be done with function
StringToNumber.

Student Records Generic Category Functions
Rule ID Name Long Description

SCC_RULE_ID_20130510122816 GetTermInformation This Rule returns all information from
the TERM_TBL.

SCC_RULE_ID_20130511184959 ValidateStudentAPTProgram Validate Student Program using the
academic program information in the
APT.

SCC_RULE_ID_20130511192230 ValidateStudentAPTCareer Validate Student Career using the
academic program information in the
APT.

SCC_RULE_ID_20130511190534 ValidateStudentAPTSubplan Validate Student Subplan using the
academic program information in the
APT.

SCC_RULE_ID_20130511183011 ValidateStudentAPTPlan Validate Student Plan using the academic
program information in the APT.

SCC_RULE_ID_20130510201105 ValidateStudentSubplan Validate Student Subplan.

SCC_RULE_ID_20130510195809 ValidateStudentPlan Validate Student Plan.

SCC_RULE_ID_20130510193556 ValidateStudentProgram Validate Student Program.

SCC_RULE_ID_20130510180645 ValidateStudentCareer Validate Student Career.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 169

Rule ID Name Long Description

SCC_RULE_ID_20130510163902 GetSessionInformation Get information for a term session.

Create Text Message Category Functions
Rule ID Name Long Description

SCC_RULE_ID_20130530144525 CreateTextMessage Create a text message data set and
populate it with a message from the
message catalog. Up to 9 parameters for
the message can be used.

SCC_RULE_ID_20140217002205 CreateTextCatalogMessage Create a text catalog message data set
and populate it with a message from
Text Catalog. Up to 4 context keys and 5
parameters for the message can be used.

Using Delivered Text Message Rules
Functions in the Text Message Category allow you to retrieve a formatted Text Message from the System.
Text messages can be retrieved from the following functionality:

• Message Text Catalog

• Text Catalog

To use Message Text Catalog Text in your Rule, a message catalog text entry needs to exist.

Working with the Rules Engine Chapter _

170 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Access Message Text catalog via PeopleTools, System Administration, Utilities, Administration, Message
Catalog to view or create Message Catalog entries.

Image: Maintain Text Catalog Page for Rules Engine Create Text Message Example

This example illustrates the fields and controls for the Maintain Text Catalog Page for Rules Engine
Create Text Message Example.

Sub ID’s must be created prior to creating a Text Catalog Text entry.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 171

Access Set Up Common Objects, Common Definitions, Text Catalog and Notepad, Configure Text
Catalog to set up Configure Text Catalog to add a relevant Sub ID for the relevant application area.

Image: Configure Text Catalog Page for Rules Engine Create Text Message Example

This example illustrates the fields and controls for the Configure Text Catalog Page for Rules Engine
Create Text Message Example.

Working with the Rules Engine Chapter _

172 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

This is an example of a call to a Function that retrieves the Text Catalog:

Image: Example of a Function Call to the Text Catalog for Rules Engine Create Text Message

This example illustrates the fields and controls for an example of a Function Call to the
CreateTextCatalogMessage rule that uses the Text Catalog.

To retrieve a formatted text message supply the appropriate input defined as arguments:

Argument Name Details How does this relate to setup

Application ID A Text value. This argument is required. This corresponds to Application ID in
the Maintain Text Catalog set up from
which a Text Message is retrieved.

Sub ID A Text Value. This argument is required. This corresponds to Sub ID in the
Maintain Text Catalog set up from which
a Text Message is retrieved.

Text ID A Text Value. This argument is required. This corresponds to the unique Text ID
in the Maintain Text Catalog set up from
which a Text Message is retrieved.

Parameter 1 through 5 Text. Optional This value replaces Message Text
variables %1 through %5 with a value.
 Provide a Variable, Text Value or (data
set) property.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 173

Argument Name Details How does this relate to setup

Key Value 1 through 4 Text, Optional Context Keys can be used for granular
selection of Context Catalog Text’s
added to a Text Catalog ID.

Text Catalog Data Set Required Provide a Data Set Variable which
references system Data Set “Text Catalog
Data Set”.

Evaluation Management System (EMS) Category Rules
Rules in the following category are delivered as examples to demonstrate the use of an automated rating
scheme as part of an Evaluation. All Rules created which interact with the Evaluation records should be
built under this category to take advantage of the delivered data sets and Rule group which support Rules
processing for Evaluations.

Rule ID Name Long Description

SCC_RULE_ID_20140306170755 Rating Scheme Calculation Example This Rule can be used at the Evaluation
Rating Scheme level as an alternate
calculation of the Overall Rating value
for the scheme. This example returns the
sum of the component rating values.

SCC_RULE_ID_20140303114951 Test Score Rule Example This Rule returns a rating value for the
rating component based upon the highest
score value in a comparison of ACT
scores and SAT I scores. Calls a number
of Rules to get the scores from the test
score records, evaluate those results
against a rating scale to obtain the rating
value to populate the rating component.

SCC_RULE_ID_20140306173039 Academic Qualification Example This Rule returns a rating value to the
rating component based upon education
data fields of percentile rank and
converted GPA contained in External
Academic Summary. Calls a number
of other Rules which get the GPA and
percentile values, evaluate those results
against a rating scale to obtain the rating
value to populate the rating component.

SCC_RULE_ID_20140306172622 Courses Completed Requirement
Example

This Rule returns a rating value to the
rating component based on a count of
completed subjects in External Academic
Subjects.

SCC_RULE_ID_20140304120320 Get ACT Rating Value Example Returns the rating value for an ACT
score.

SCC_RULE_ID_20140306141320 Get Course Count Rating Example Gets the rating value for Course Count.

Working with the Rules Engine Chapter _

174 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Long Description

SCC_RULE_ID_20140306143945 Get Course Requirement Rating
Example

Returns a rating value based on the
number of Courses Completed for all
Academic History entries that have
External Academic Data rows where
External Career = HS and Transcript
Type = OFF.

SCC_RULE_ID_20140306161125 Get Courses Completed Count Example Returns a count of completed courses in
External Academic Subjects.

SCC_RULE_ID_20140304123947 Get GPA Rating Example Returns the rating value for a GPA.

SCC_RULE_ID_20140304162158 Get High School Rating Example Gets the highest rating value of the
Converted GPA and Percentile values
and passes to Get High School Rating
Driver Rule.

SCC_RULE_ID_20140304170413 Get High School Rating Driver Example Loops through External Academic Data
where External Career = HS for an
EMPLID and calls Get High School
Rating. Returns the highest High School
Rating.

SCC_RULE_ID_20140226160705 Get Highest Test Component Score
Example

Returns the highest score for the
specified EMPLID, TEST_ID, and TEST
_COMPONENT.

SCC_RULE_ID_20140304155504 Get Percentile Rating Example Returns the rating value for a Percentile
Rank.

SCC_RULE_ID_20140304121526 Get SAT I Rating Value Example Returns a rating value for a SAT I Test
Score Total.

SCC_RULE_ID_20140226155857 Get Test Component Scores Example Returns a list of test component scores
for the specified EMPLID, TEST_ID and
TEST_COMPONENT.

Research Self Service Task Category Rule
The Rule in this category can be used to Return Notification recipient EMPLID for the Research
Candidate in context.

Rule ID Name Description

SCC_RULE_ID_20140115033240 Research Std SS task notification
recipient

Returns the Active Primary Supervisor
ID for the Research/Project Candidate in
context.

Service Request Functions Category Rules
Rules and Functions in this category can be used to Return information relating to the Research Service
Request in context.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 175

Rule ID Name Description

SCC_RULE_ID_20131017052110 Service Request Assignment: getSetup Returns the Advisor Type, Default
EMPLID from the Service Request
Assignment Setup for the Institution,
 service request type and subtype.

SCC_RULE_ID_20131018043858 Service Request Assignment:
getTYPESetup

Returns the Service Request Category
for the given Service Request Type.

SCC_RULE_ID_20131017060725 Service Request Assignment:
getCATSetup

Returns the “SR Assigned to” EMPLID
from the Service Request Category Setup
for the Service Request in context.

SCC_RULE_ID_20131017014805 Service Request Assignment:Research
Advisor

Returns the “Advisor” EMPLID from the
Student Advisor History for the Service
Request in context.

SCC_RULE_ID_20131016061345 Service Request Assignment:Research
Supervisor

Derive the Primary Research supervisor
for the Service Request in context.

SCC_RULE_ID_20131017014916 Default Service Request Assignment
Logic

Returns EMPLID to which the service
request will be assigned.

Service Requests Category Rule
The Rules in this category can be used to derive AssignedTO EMPLID for the Research Service Request
in context.

Rule ID Name Description

SCC_RULE_ID_20140205065106 Service Request AssignedTo : Rule
Trigger

This Trigger Rule is called from Rule
Trigger definition to derive Service
Request AssignedTo in Research
Service Requests Student and admin
components.

Research Functions Category Rules
Functions in this category can be used to return Active Supervisors and Admin Affiliation Profiles for the
Research Service Request in context.

Rule ID Name Description

SCC_RULE_ID_20140206024642 Match Topic Title Matches Title of active Research Topics
of given status with the passed Thesis
Title parameter. If topic records exist but
title doesn’t match, then it returns false,
 else true.

SCC_RULE_ID_20140120052534 Get Active Research Supervisors Returns the List of active Research
Supervisors for the candidate in context.

Working with the Rules Engine Chapter _

176 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Rule ID Name Description

SCC_RULE_ID_20140120083423 Get Active Admin Profiles Returns the List of active Research/
Project Admin Affiliation Profiles for the
candidate in context.

Research Candidates Category Rules
Rules and Functions in this category can be used to return true/false with a list of messages for the
Research Candidate in context. These Rules can be used in the Research Rule Types and Execution Event
Context components to display the warning messages in the Research Components.

Rule ID Name Description

SCC_RULE_ID_20140116235214 Candidate has active Supervisors Checks if the candidate has active
Supervisors. Returns message if not
found.

SCC_RULE_ID_20140120084414 Candidate has non available research
Supervisors

Checks if Candidate has any Research
Supervisors who are not available
anymore. If so returns a message.

SCC_RULE_ID_20140121001258 Candidate has non available Project
Supervisors

Checks if Candidate Project has any
Project Supervisors who are not
available anymore. If so returns a
message.

SCC_RULE_ID_20140206012715 Compare Thesis Title Checks if Candidate Thesis Title matches
any of the active Approved Topic Titles.
 If Not, returns a message.

Notification Framework Category Rules
Using delivered functions, you can create a notification in a specific channel. The Notification Rule can
be called by other Rules. This makes it possible to send notifications conditionally based on an evaluation
or calculation result for a specific selection of students in your database.

Rule ID Name Description

SCC_RULE_ID_20140203094013 Announcement Notification An Announcement Notification can
be created for the channel Alert. (for
example, an informational message that
appears on a portal homepage). Note that
an Announcement is an Alert created not
for one Recipient but for all recipients.

SCC_RULE_ID_20131219093336 Email Notification A notification can be created for the
Email Channel. Use this Notification
to send Emails to one or more persons
using the TO, CC and BCC email
options. Attachments can be included.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 177

Rule ID Name Description

SCC_RULE_ID_20140211033859 Push Notification A notification can be created for the
channel Push. Push Notifications are
created for mobile apps on iOS/Android.

SCC_RULE_ID_20140211080755 SMS Notification A notification can be created for the
channel SMS.

SCC_RULE_ID_20140211033801 Worklist Notification A notification can be created for the
channel Worklist. This Rule creates a
Worklist Item on a Portal Homepage
with actionable hyperlink.

SCC_RULE_ID_20140211092724 Alert Notification A notification can be created for
the channel Alert.(for example,
 Informational message that appears on a
portal homepage).

Using Notification Framework Rules
To use the Notification Rules, you must complete the Notification Framework setup. To facilitate usage of
Notification Rules, Oracle delivers a Notification Consumer Setup.

Rules Engine Notification Consumer ID
The Consumer ID controls which consumers can send Notifications through the Notification Framework.
Oracle delivers a Notification Consumer ID for Rules Engine.

UID Name Long Description Purpose

SCC_NTF_CON_
20131112191211

Rules Engine Notification Consumer for
Rules Engine. Attached
Templates are delivered
as examples and can be
used to send Rules Engine
Notifications.

The following Consumer
ID is used to send Rules
Engine Notifications. The
Consumer ID is linked to
active Notification Rules.

Working with the Rules Engine Chapter _

178 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Navigate to Set Up SACR, System Administration, Utilities, Notifications, Notification Consumer Setup.

Image: Notification Consumer Setup Page for Rules Engine Example

This example illustrates the fields and controls for the Notification Consumer Setup Page for Rules
Engine Example.

The Rules Engine can create and send a Notification in these Channels:

• Email

• Alert

• Workflow

• Push

• SMS

There is a corresponding Notification Setup Template for each channel supported by Rules Engine. The
associated application class is a dummy class which has been added as a placeholder. The application
class does not contain any logic or functionality but must be added as a default application class for any
Institution Template added to Notification Consumer Setup for Rules Engine.

Rules Engine Templates
Templates allow you to set up the recipients for the Notifications. A template has been created for each
notification supported by Rules Engine. Oracle delivers these Template ID’s for Rules Engine:

Template ID Name Long Description Associated Generic
Template

SCC_NTF_TMP_
20131112191858

Rules Engine Email Example Template for sending
Rules Engine Notifications of
type Email

SCC_RULES_ENGINE_
EMAIL

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 179

Template ID Name Long Description Associated Generic
Template

SCC_NTF_TMP_
20140123062439

Rules Engine Alert Example Template for sending
Rules Engine Notifications
of type Alert as well as
Announcements

SCC_RULES_ENGINE_
ALERT

SCC_NTF_TMP_
20140123070158

Rules Engine Workflow Example Template for sending
Rules Engine Notifications of
type Worklfow

SCC_RULES_ENGINE_WL

SCC_NTF_TMP_
20140204030502

Rules Engine Push Example Template for sending
Rules Engine Notifications of
type Push

SCC_RULES_ENGINE_
PUSH

SCC_NTF_TMP_
20140204030858

Rules Engine SMS Example Template for sending
Rules Engine Notifications of
type SMS

SCC_RULES_ENGINE_SMS

Click on View Template Name on the Notification Consumer Setup Page or navigate to Set Up SACR,
System Administration, Utilities, Notifications, Notification Setup to view delivered Notification IDs.

Working with the Rules Engine Chapter _

180 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

This screen shot shows the delivered Rules Engine Template for channel Email. You can adjust the
Template to suit your needs; however, Oracle recommends that you create your own Templates.

Image: Notification Setup Page for Rules Engine Example

This example illustrates the fields and controls for the Notification Setup Page for Rules Engine Example.

Rules Engine Generic Templates
Each Template ID is associated with a Generic template. The Generic Template controls the Message
Text and the Variables to include in the Notification Message. The attached Generic Template can be
adjusted to suit Institution requirements or can be replaced by an institution specific Template. Access

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 181

PeopleTools, Workflow, Notifications, Generic Templates to adjust Generic Templates or use the prompt
option on the Template ID setup to access. Oracle delivers the following Generic Templates for Rules
Engine:

Template ID Name Template Variables

SCC_RULES_ENGINE_EMAIL Rules Engine Email %1 Subject

%2 Message Body

SCC_RULES_ENGINE_ALERT Rules Engine Alert %1 Subject

%2 Message Body

SCC_RULES_ENGINE_WL Rules Engine Workflow %1 Subject

%2 Message Body

SCC_RULES_ENGINE_PUSH Rules Engine Push %1 Subject

%2 Message Body

Working with the Rules Engine Chapter _

182 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Template ID Name Template Variables

SCC_RULES_ENGINE_SMS Rules Engine SMS %1 Subject

%2 Message Body

Image: Generic Template Definition Example for Rules Engine

This example illustrates the fields and controls for the Generic Template Definition Example for Rules
Engine.

Understanding the Interaction between the Notification Framework and the
Notification Rule
The Rules delivered in the Notification Framework Category can be used to send a Notification in one or
more notification channels. The following Rules are delivered:

• Email Notification

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 183

• SMS Notification

• Alert Notification

• Announcement Notification

• Worklist Notification

Access the Rules Engine Manager to access Notification Rules (Set Up SACR, System Administration,
Rules Engine, Rules Engine Manager, select Search for a Rule. Use the prompt to select Rule Category
Name Notification Framework. Click Search and select the desired Notification Rule (Email, SMS, Alert,
Push, or Worklist).

Image: Rules EngineDefine Rule Page for Rules Engine Notification Example

This example illustrates the fields and controls for the Define Rule Page for Rules Engine Notification
Example.

When the Notification Rule completes, you should be able to review the Notification in the Notification
Framework Admin Page and view the notification as output by channel (For example, by verifying that an
email has been sent). The recipient can review the Notification via Self Service Notifications.

This table describes each variable and its relationship to the Notification Framework Rule functionality:

Working with the Rules Engine Chapter _

184 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Variable Name Details How does this relate to
Notification Framework setup

Emplid

List of To Emplids

List of CC Emplids

List of BCC Emplids

EMPLID to which the Notification is to
be sent. Valid for Notification Channels:
ALERT, WORKFLOW, EMAIL, PUSH

The Rule uses the settings on the
Notification Template to determine
where the notification needs to be sent.
 A recipient is selected according to the
settings which have been administered
on the Notification Template. For
example, Preferred Email address.

For Template SCC_RULES_ENGINE_
EMAIL this could be a Preferred Email
Address, Custom Logic or a Static
address.

For Notification channel email a
notification can be sent to the following
recipients:

• TO

• CC

• BCC

• Other channels support only one
recipient

In the Notification Email Rule, it is
required to provide an Emplid for the TO
recipient. Emplid can be provided for
recipients CC and BCC.

Multiple recipients can be added for the
Email channel.

List of Email Attachments

Attachment File Name

File Name to be added to email

Valid for Notification Channels: EMAIL

The Notification Rule for channel
EMAIL allows you to specify an
attachment file Path and File Name. The
File name is retrieved from the specified
file Path, added to the email sent by the
Notification Framework, and sent to the
listed Recipients.

Note: Although not required, when an
Attachment file name is specified, the
Attachment file path should also be
specified and vice versa.

Multiple attachments can be added

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 185

Variable Name Details How does this relate to
Notification Framework setup

List of Email Attachments

Attachment File Path

File Location of the File which is to be
added to email

Valid for Notification Channels: EMAIL

Refer to Attachment File Name.

Consumer ID The Notification Consumer ID of the
consumer sending the notification.

Valid for all Notification Channels.

A LOV prompt is attached to this LOV
so that only the Consumer ID Rules
Engine can be selected.

Template ID The Notification Template ID of the
template to be used for the Notification.
 The Notification Template holds
information about the notification type
and recipients configuration.

Valid for all Notification Channels

A LOV Prompt is to this LOV so that
only templates relevant for Consumer
ID Rules Engine can be selected.
 The Notification Template controls
the Notification Type and Recipient
information.

Template Variables The names of the Template Variables
which are set up on the Notification
Template as Variables. The Variable
Names and Order should match those of
the Template (for example %1).

Valid for all Notification Channels.

Template Variables can be added to a
List Variable. The Template Variables
added to the list should correspond to
the Variables which have been created
on the Generic Notification Template for
this specific Notification. The Variables
are used to provide the Email with
appropriate text for the Message Subject
as well as body.

Template Variable Values The values to be placed into the
Variables which have been defined on
the Notification Template.

Valid for all Notification Channels.

Variables can be added to this List
Variable. The Variables are used to
populate the Template Variables as
they have been created on the Generic
Template. It is possible to add hard-
coded text as well as Variables to the
Template Variable Values list. The order
in which the text and variables are added
to the list must match the order of the
Template Variables list.

Working with the Rules Engine Chapter _

186 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Variable Name Details How does this relate to
Notification Framework setup

Notification Type Created If the Notification has been generated
successfully, the Notification type is
filled.

Valid for all Notification Channels.

Possible Values:

• ALT: An Alert has been sent to the
Notification Framework.

• EML: An email has been sent to the
Notification Framework.

• PSH: A Push notification has been
sent to the Notification Framework.

• SMS: A SMS has been successfully
sent to the Notification Framework.

• WKL: A Worklist has been
successfully sent to the Notification
framework.

Note: The Rule itself does not create
the Notification but sends a Notification
to the Notification Framework which
in turn handles the actual Notification.
 The Rule can only indicate whether
the Notification was handed to the
Notification Framework using the
appropriate channel. The Rule cannot
determine whether the notification (for
example email) was sent successfully.

Error Message The Notification was not generated
successfully Valid for all Notification
Channels.

If the notification has not been generated
successfully the following output field
contains an error message. Again this
only concerns an error which may
have occurred passing values to the
Notification Framework.

Component Component Name

Valid for Notification Channels: WORK
LIST

The component to which the Notification
applies. For a notification referring
to campus community, Personal
Information (Student), Add/Update
Person, Biographical Details the value
would be : SCC_BIO_DEMO.

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 187

Variable Name Details How does this relate to
Notification Framework setup

Menu Name Menu Name

Valid for Notification Channels: WORK
LIST

The Menu name to which the
Notification applies. For a notification
referring to campus community, Personal
Information (Student), Add/Update
Person, Biographical Details the value
would be : CC_BIO_DEMO_DATA_
STDNT.

Menu Bar Name Menu Bar Name

Valid for Notification Channels: WORK
LIST

The Menu Bar name to which the
Notification applies. For a notification
referring to campus community, Personal
Information (Student), Add/Update
Person, Biographical Details the value
would be : USE.

Menu Item Name Menu Item Name

Valid for Notification Channels: WORK
LIST

The Menu Item name to which the
Notification applies. For a notification
referring to campus community, Personal
Information (Student), Add/Update
Person, Biographical Details the value
would be : SCC_BIO_DEMO .

Page Name Page Name

Valid for Notification Channels: WORK
LIST

The Page name to which the Notification
applies. For a notification referring
to campus community, Personal
Information (Student), Add/Update
Person, Biographical Details the value
would be : SCC_BIO_DEMO_PERS.

Mode Mode

Valid for Notification Channels: WORK
LIST

The Mode in which the component
should be opened. For a notification
referring to campus community, Personal
Information (Student), Add/Update
Person, Biographical Details the value
would be: U (Update/Display).

Market Market

Valid for Notification Channels: WORK
LIST

The Market to which the environments
portal applies For a notification referring
to campus community, Personal
Information (Student), Add/Update
Person, Biographical Details the value
would be GBL.

Working with the Rules Engine Chapter _

188 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Variable Name Details How does this relate to
Notification Framework setup

URL URL

Valid for Notification Channels: WORK
LIST

The generated URL which is used by
the Notification for the corresponding
notification email.

This is an example of the value for a
generated notification URL referring
to Campus Community, Personal
information (student), Add/Update
Person, Biographical Details: http://
<EnvironmentName>/EMPLOYEE/
HRMS/c/CC_BIO_DEMO
_DATA_STDNT.SCC_BIO_DEMO
.GBL?Page=SCC_BIO_DEMO_PERS
&ACAD_CAREER=UGRD&EMPLID=
<StudentID>&Action=U

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 189

Testing the Notification Rule
In this example, the Email Notification Rule is used. Select the Test Rule Action as shown below:

Image: Rules Engine Tester Page for Rules Engine Notification Example

This example illustrates the fields and controls for the Rules Engine Tester Page for Rules Engine
Notification Example

Variable Instructions

List of To Emplids Provide an Emplid or multiple Emplids. The Emplid selected should have the correct setup
in place to receive this notification. For Example, in order to send an email to this EmplID, a
valid EmplID must have been entered as Preferred Email address (for example via Campus
community, Personal information (student), Biographical (student), addresses/phones, Electronic
addresses).

Consumer ID Use provided prompt to select the Consumer ID for Rules Engine.

Template ID Use the provided prompt to select a Template ID which has been created for Consumer ID Rules
Engine.

Working with the Rules Engine Chapter _

190 Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Variable Instructions

List of NFK Template
Variables

Use the provided prompt to provide a list of Template Variables.

Note: When using the Tester you must provide Text values. When calling the Notification Rule
from another Rule, you can provide Variables for all or some list Values.

Click Execute Test to test the Notification Rule. The Outputs grid displays information from the
Notification Framework indicating the successful handling of the Notification; such as the Notification
status Code, the Notification Status, and any relevant Error Messages.

After the Rule completes Generated notifications can be viewed via the Notification Admin component
Open the Notification Admin component (Campus Community, Notifications, Admin Notifications).
Select the appropriate Notification to view:

Image: Notifications Administration Overview Page for Rules Engine Notification Example

This example illustrates fields and controls for the Notifications Administration Overview Page for Rules
Engine Notification Example.

Calling the Notification Rule
The Notification Rule can be called from another Rule. This allows you to generate Notifications in
a notification channel for multiple students which are selected based on the logic you have created in
the calling Rule. The following is an example of a Rule calling the Notification Rule. This simple Rule
sends a notification to active applicants in a selected career: The call statement has been added simply

Chapter _ Working with the Rules Engine

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 191

by selecting the Notification Rule and providing required Input values. The prompt functionality for
Consumer ID and Template ID also works on the call statement.

Image: Define Rule Page for Notification Rule Call Example

This example illustrates the fields and controls for the Define Rule Page for Notification Rule Call
Example.

		Working with the Rules Engine

		Understanding the Rules Engine

		Rules Engine Components

		High Level Description of the Rules Engine

		Rules Engine Manager and Entity Registry

		Additional Rules Engine Features

		Setting Up the Rules Engine

		Pages Used to Setup the Rules Engine

		Setting Up Rules Engine Install Options

		Defining Rule Category Security

		Defining Color Codes for Rules Engine Manager Elements

		Defining Rules Engine Statements

		Define Rules Version Reason Codes

		Setting Up Rules Engine Variables

		Defining Lists of Values for Rules Engine Variables

		Constructing Rules

		Pages Used for Constructing Rules

		Using Rules Engine Search

		Using Rule Groups Search

		Creating Functional Rules

		Adding Variables to a Rule

		Adding Criteria to a Rule

		Defining Rule Groups

		Defining Rule Triggers

		Using Statements for Evaluation and Calculation in a Rule

		Pages for Using Statements for Evaluation and Calculation in a Rule

		Understanding Statements for Evaluation and Calculation in a Rule

		Understanding Common Statement Attributes

		Understanding Statement–Specific Attributes

		Activating and Moving Statements within a Rule

		Applying Rule Concepts and Adding Statements to a Rule

		Understanding Contextual Referencing

		Building and Testing Rules

		Pages for Building and Testing Rules

		Building Rules

		Testing Rules

		Creating a New Version of a Rule

		Viewing Rule Cross References

		Running Rules in Batch

		Page Used for Running Rules in Batch

		Running Rules in Batch

		Integrating User Interfaces with the Rules Engine

		Building and Testing a Functional Rule

		Create a Trigger to Call the Functional Rule

		Generate Boilerplate Code

		Attach Generated Code to the Component Event

		Library of System-Delivered Rules Engine Objects

		Lists of Values

		System Variables

		Data Sets

		System Delivered Categories

		Entity Profiles

		Entities

		Rule Groups

		System Test Category Functions

		AIR Category Functions

		APT Category Functions

		APT Category Function Rules

		Activity Management Calculation Category Rules

		Date and Time Category Functions

		Debug Category Functions

		Entity Category Functions

		Math Functions

		String Category Functions

		Number Category Functions

		Student Records Generic Category Functions

		Create Text Message Category Functions

		Evaluation Management System (EMS) Category Rules

		Research Self Service Task Category Rule

		Service Request Functions Category Rules

		Service Requests Category Rule

		Research Functions Category Rules

		Research Candidates Category Rules

		Notification Framework Category Rules

